Models
Defining models
By defining an ormar Model you get corresponding Pydantic model as well as Sqlalchemy table for free.
They are being managed in the background and you do not have to create them on your own.
Model Class
To build an ormar model you simply need to inherit a ormar.Model
class.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
|
Defining Fields
Next assign one or more of the Fields as a class level variables.
Basic Field Types
Each table has to have a primary key column, which you specify by setting primary_key=True
on selected field.
Only one primary key column is allowed.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
|
Warning
Not assigning primary_key
column or assigning more than one column per Model
will raise ModelDefinitionError
exception.
By default if you assign primary key to Integer
field, the autoincrement
option is set to true.
You can disable by passing autoincrement=False
.
| id: int = ormar.Integer(primary_key=True, autoincrement=False)
|
Non Database Fields
Note that if you need a normal pydantic field in your model (used to store value on model or pass around some value) you can define a
field with parameter pydantic_only=True
.
Fields created like this are added to the pydantic
model fields -> so are subject to validation according to Field
type,
also appear in dict()
and json()
result.
The difference is that those fields are not saved in the database. So they won't be included in underlying sqlalchemy columns
,
or table
variables (check Internals section below to see how you can access those if you need).
Subsequently pydantic_only
fields won't be included in migrations or any database operation (like save
, update
etc.)
Fields like those can be passed around into payload in fastapi
request and will be returned in fastapi
response
(of course only if you set their value somewhere in your code as the value is not fetched from the db.
If you pass a value in fastapi
request
and return the same instance that fastapi
constructs for you in request_model
you should get back exactly same value in response
.).
Warning
pydantic_only=True
fields are always Optional and it cannot be changed (otherwise db load validation would fail)
Tip
pydantic_only=True
fields are a good solution if you need to pass additional information from outside of your API
(i.e. frontend). They are not stored in db but you can access them in your APIRoute
code and they also have pydantic
validation.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
non_db_field: str = ormar.String(max_length=100, pydantic_only=True)
|
If you combine pydantic_only=True
field with default
parameter and do not pass actual value in request you will always get default value.
Since it can be a function you can set default=datetime.datetime.now
and get current timestamp each time you call an endpoint etc.
Note
Note that both pydantic_only
and property_field
decorated field can be included/excluded in both dict()
and fastapi
response with include
/exclude
and response_model_include
/response_model_exclude
accordingly.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 | # <==related of code removed for clarity==>
class User(ormar.Model):
class Meta:
tablename: str = "users2"
metadata = metadata
database = database
id: int = ormar.Integer(primary_key=True)
email: str = ormar.String(max_length=255, nullable=False)
password: str = ormar.String(max_length=255)
first_name: str = ormar.String(max_length=255)
last_name: str = ormar.String(max_length=255)
category: str = ormar.String(max_length=255, nullable=True)
timestamp: datetime.datetime = ormar.DateTime(
pydantic_only=True, default=datetime.datetime.now
)
# <==related of code removed for clarity==>
app =FastAPI()
@app.post("/users/")
async def create_user(user: User):
return await user.save()
# <==related of code removed for clarity==>
def test_excluding_fields_in_endpoints():
client = TestClient(app)
with client as client:
timestamp = datetime.datetime.now()
user = {
"email": "test@domain.com",
"password": "^*^%A*DA*IAAA",
"first_name": "John",
"last_name": "Doe",
"timestamp": str(timestamp),
}
response = client.post("/users/", json=user)
assert list(response.json().keys()) == [
"id",
"email",
"first_name",
"last_name",
"category",
"timestamp",
]
# returned is the same timestamp
assert response.json().get("timestamp") == str(timestamp).replace(" ", "T")
# <==related of code removed for clarity==>
|
Property fields
Sometimes it's desirable to do some kind of calculation on the model instance. One of the most common examples can be concatenating
two or more fields. Imagine you have first_name
and last_name
fields on your model, but would like to have full_name
in the result
of the fastapi
query.
You can create a new pydantic
model with a method
that accepts only self
(so like default python @property
)
and populate it in your code.
But it's so common that ormar
has you covered. You can "materialize" a property_field
on you Model
.
Warning
property_field
fields are always Optional and it cannot be changed (otherwise db load validation would fail)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | import databases
import sqlalchemy
import ormar
from ormar import property_field
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
@property_field
def prefixed_name(self):
return "custom_prefix__" + self.name
|
Warning
The decorated function has to accept only one parameter, and that parameter have to be self
.
If you try to decorate a function with more parameters ormar
will raise ModelDefinitionError
.
Sample:
| # will raise ModelDefinitionError
@property_field
def prefixed_name(self, prefix="prefix_"):
return 'custom_prefix__' + self.name
# will raise ModelDefinitionError
# (calling first param something else than 'self' is a bad practice anyway)
@property_field
def prefixed_name(instance):
return 'custom_prefix__' + self.name
|
Note that property_field
decorated methods do not go through verification (but that might change in future) and are only available
in the response from fastapi
and dict()
and json()
methods. You cannot pass a value for this field in the request
(or rather you can but it will be discarded by ormar so really no point but no Exception will be raised).
Note
Note that both pydantic_only
and property_field
decorated field can be included/excluded in both dict()
and fastapi
response with include
/exclude
and response_model_include
/response_model_exclude
accordingly.
Tip
Note that @property_field
decorator is designed to replace the python @property
decorator, you do not have to combine them.
In theory you can cause ormar
have a failsafe mechanism, but note that i.e. mypy
will complain about re-decorating a property.
| # valid and working but unnecessary and mypy will complain
@property_field
@property
def prefixed_name(self):
return 'custom_prefix__' + self.name
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 | # <==related of code removed for clarity==>
def gen_pass(): # note: NOT production ready
choices = string.ascii_letters + string.digits + "!@#$%^&*()"
return "".join(random.choice(choices) for _ in range(20))
class RandomModel(ormar.Model):
class Meta:
tablename: str = "random_users"
metadata = metadata
database = database
include_props_in_dict = True
id: int = ormar.Integer(primary_key=True)
password: str = ormar.String(max_length=255, default=gen_pass)
first_name: str = ormar.String(max_length=255, default="John")
last_name: str = ormar.String(max_length=255)
created_date: datetime.datetime = ormar.DateTime(
server_default=sqlalchemy.func.now()
)
@property_field
def full_name(self) -> str:
return " ".join([self.first_name, self.last_name])
# <==related of code removed for clarity==>
app =FastAPI()
# explicitly exclude property_field in this endpoint
@app.post("/random/", response_model=RandomModel, response_model_exclude={"full_name"})
async def create_user(user: RandomModel):
return await user.save()
# <==related of code removed for clarity==>
def test_excluding_property_field_in_endpoints2():
client = TestClient(app)
with client as client:
RandomModel.Meta.include_props_in_dict = True
user3 = {"last_name": "Test"}
response = client.post("/random3/", json=user3)
assert list(response.json().keys()) == [
"id",
"password",
"first_name",
"last_name",
"created_date",
]
# despite being decorated with property_field if you explicitly exclude it it will be gone
assert response.json().get("full_name") is None
# <==related of code removed for clarity==>
|
Fields names vs Column names
By default names of the fields will be used for both the underlying pydantic
model and sqlalchemy
table.
If for whatever reason you prefer to change the name in the database but keep the name in the model you can do this
with specifying name
parameter during Field declaration
Here you have a sample model with changed names
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///test.db", force_rollback=True)
metadata = sqlalchemy.MetaData()
class Child(ormar.Model):
class Meta:
tablename = "children"
metadata = metadata
database = database
id: int = ormar.Integer(name="child_id", primary_key=True)
first_name: str = ormar.String(name="fname", max_length=100)
last_name: str = ormar.String(name="lname", max_length=100)
born_year: int = ormar.Integer(name="year_born", nullable=True)
|
Note that you can also change the ForeignKey column name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | from typing import Optional
import databases
import sqlalchemy
import ormar
from .docs010 import Artist # previous example
database = databases.Database("sqlite:///test.db", force_rollback=True)
metadata = sqlalchemy.MetaData()
class Album(ormar.Model):
class Meta:
tablename = "music_albums"
metadata = metadata
database = database
id: int = ormar.Integer(name="album_id", primary_key=True)
name: str = ormar.String(name="album_name", max_length=100)
artist: Optional[Artist] = ormar.ForeignKey(Artist, name="artist_id")
|
But for now you cannot change the ManyToMany column names as they go through other Model anyway.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | import databases
import sqlalchemy
import ormar
from .docs008 import Child
database = databases.Database("sqlite:///test.db", force_rollback=True)
metadata = sqlalchemy.MetaData()
class ArtistChildren(ormar.Model):
class Meta:
tablename = "children_x_artists"
metadata = metadata
database = database
class Artist(ormar.Model):
class Meta:
tablename = "artists"
metadata = metadata
database = database
id: int = ormar.Integer(name="artist_id", primary_key=True)
first_name: str = ormar.String(name="fname", max_length=100)
last_name: str = ormar.String(name="lname", max_length=100)
born_year: int = ormar.Integer(name="year")
children = ormar.ManyToMany(Child, through=ArtistChildren)
|
Overwriting the default QuerySet
If you want to customize the queries run by ormar you can define your own queryset class (that extends the ormar QuerySet
) in your model class, default one is simply the QuerySet
You can provide a new class in Meta
configuration of your class as queryset_class
parameter.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | import ormar
from ormar.queryset.queryset import QuerySet
from fastapi import HTTPException
class MyQuerySetClass(QuerySet):
async def first_or_404(self, *args, **kwargs):
entity = await self.get_or_none(*args, **kwargs)
if entity is None:
# in fastapi or starlette
raise HTTPException(404)
class Book(ormar.Model):
class Meta(ormar.ModelMeta):
metadata = metadata
database = database
tablename = "book"
queryset_class = MyQuerySetClass
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=32)
# when book not found, raise `404` in your view.
book = await Book.objects.first_or_404(name="123")
|
Type Hints & Legacy
Before version 0.4.0 ormar
supported only one way of defining Fields
on a Model
using python type hints as pydantic.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id: ormar.Integer(primary_key=True)
name: ormar.String(max_length=100)
completed: ormar.Boolean(default=False)
c1 = Course()
|
But that didn't play well with static type checkers like mypy
and pydantic
PyCharm plugin.
Therefore from version >=0.4.0 ormar
switched to new notation.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
|
Note that type hints are optional so perfectly valid ormar
code can look like this:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id = ormar.Integer(primary_key=True)
name = ormar.String(max_length=100)
completed = ormar.Boolean(default=False)
|
Warning
Even if you use type hints ormar
does not use them to construct pydantic
fields!
Type hints are there only to support static checkers and linting,
ormar
construct annotations used by pydantic
from own fields.
Dependencies
Since ormar depends on databases
and sqlalchemy-core
for database connection
and table creation you need to assign each Model
with two special parameters.
Databases
One is Database
instance created with your database url in sqlalchemy connection string format.
Created instance needs to be passed to every Model
with Meta
class database
parameter.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
|
Tip
You need to create the Database
instance only once and use it for all models.
You can create several ones if you want to use multiple databases.
Sqlalchemy
Second dependency is sqlalchemy MetaData
instance.
Created instance needs to be passed to every Model
with Meta
class metadata
parameter.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
|
Tip
You need to create the MetaData
instance only once and use it for all models.
You can create several ones if you want to use multiple databases.
Best practice
Only thing that ormar
expects is a class with name Meta
and two class variables: metadata
and databases
.
So instead of providing the same parameters over and over again for all models you should creata a class and subclass it in all models.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 | from typing import Optional
import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///test.db", force_rollback=True)
metadata = sqlalchemy.MetaData()
# note that you do not have to subclass ModelMeta,
# it's useful for type hints and code completion
class MainMeta(ormar.ModelMeta):
metadata = metadata
database = database
class Artist(ormar.Model):
class Meta(MainMeta):
# note that tablename is optional
# if not provided ormar will user class.__name__.lower()+'s'
# -> artists in this example
pass
id: int = ormar.Integer(primary_key=True)
first_name: str = ormar.String(max_length=100)
last_name: str = ormar.String(max_length=100)
born_year: int = ormar.Integer(name="year")
class Album(ormar.Model):
class Meta(MainMeta):
pass
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
artist: Optional[Artist] = ormar.ForeignKey(Artist)
|
Warning
You need to subclass your MainMeta
class in each Model
class as those classes store configuration variables
that otherwise would be overwritten by each Model
.
Table Names
By default table name is created from Model class name as lowercase name plus 's'.
You can overwrite this parameter by providing Meta
class tablename
argument.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
# if you omit this parameter it will be created automatically
# as class.__name__.lower()+'s' -> "courses" in this example
tablename = "my_courses"
database = database
metadata = metadata
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
|
Constraints
On a model level you can also set model-wise constraints on sql columns.
Right now only IndexColumns
and UniqueColumns
constraints are supported.
Note
Note that both constraints should be used only if you want to set a name on constraint or want to set the index on multiple columns, otherwise index
and unique
properties on ormar fields are preferred.
Tip
To read more about columns constraints like primary_key
, unique
, ForeignKey
etc. visit fields.
UniqueColumns
You can set this parameter by providing Meta
class constraints
argument.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
# define your constraints in Meta class of the model
# it's a list that can contain multiple constraints
# hera a combination of name and column will have to be unique in db
constraints = [ormar.UniqueColumns("name", "completed")]
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
|
Note
Note that constraints are meant for combination of columns that should be unique.
To set one column as unique use unique
common parameter.
Of course you can set many columns as unique with this param but each of them will be checked separately.
IndexColumns
You can set this parameter by providing Meta
class constraints
argument.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
# define your constraints in Meta class of the model
# it's a list that can contain multiple constraints
# hera a combination of name and column will have a compound index in the db
constraints = [ormar.IndexColumns("name", "completed")]
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
|
Note
Note that constraints are meant for combination of columns that should be in the index.
To set one column index use unique
common parameter.
Of course, you can set many columns as indexes with this param but each of them will be a separate index.
CheckColumns
You can set this parameter by providing Meta
class constraints
argument.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | import datetime
import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
# define your constraints in Meta class of the model
# it's a list that can contain multiple constraints
# hera a combination of name and column will have a level check in the db
constraints = [
ormar.CheckColumns("start_time < end_time", name="date_check"),
]
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
start_date: datetime.date = ormar.Date()
end_date: datetime.date = ormar.Date()
|
Note
Note that some databases do not actively support check constraints such as MySQL.
Pydantic configuration
As each ormar.Model
is also a pydantic
model, you might want to tweak the settings of the pydantic configuration.
The way to do this in pydantic is to adjust the settings on the Config
class provided to your model, and it works exactly the same for ormar models.
So in order to set your own preferences you need to provide not only the Meta
class but also the Config
class to your model.
Note
To read more about available settings visit the pydantic config page.
Note that if you do not provide your own configuration, ormar will do it for you.
The default config provided is as follows:
| class Config(pydantic.BaseConfig):
orm_mode = True
validate_assignment = True
|
So to overwrite setting or provide your own a sample model can look like following:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
class Config:
allow_mutation = False
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
|
By default ormar
forbids you to pass extra fields to Model.
If you try to do so the ModelError
will be raised.
Since the extra fields cannot be saved in the database the default to disallow such fields seems a feasible option.
On the contrary in pydantic
the default option is to ignore such extra fields, therefore ormar
provides an Meta.extra
setting to behave in the same way.
To ignore extra fields passed to ormar
set this setting to Extra.ignore
instead of default Extra.forbid
.
Note that ormar
does not allow accepting extra fields, you can only ignore them or forbid them (raise exception if present)
1
2
3
4
5
6
7
8
9
10
11
12 | from ormar import Extra
class Child(ormar.Model):
class Meta(ormar.ModelMeta):
tablename = "children"
metadata = metadata
database = database
extra = Extra.ignore # set extra setting to prevent exceptions on extra fields presence
id: int = ormar.Integer(name="child_id", primary_key=True)
first_name: str = ormar.String(name="fname", max_length=100)
last_name: str = ormar.String(name="lname", max_length=100)
|
To set the same setting on all model check the best practices and BaseMeta
concept.
Model sort order
When querying the database with given model by default the Model is ordered by the primary_key
column ascending. If you wish to change the default behaviour you can do it by providing orders_by
parameter to model Meta
class.
Sample default ordering:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | database = databases.Database(DATABASE_URL)
metadata = sqlalchemy.MetaData()
class BaseMeta(ormar.ModelMeta):
metadata = metadata
database = database
# default sort by column id ascending
class Author(ormar.Model):
class Meta(BaseMeta):
tablename = "authors"
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
|
Modified
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | database = databases.Database(DATABASE_URL)
metadata = sqlalchemy.MetaData()
class BaseMeta(ormar.ModelMeta):
metadata = metadata
database = database
# now default sort by name descending
class Author(ormar.Model):
class Meta(BaseMeta):
tablename = "authors"
orders_by = ["-name"]
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
|
Model Initialization
There are two ways to create and persist the Model
instance in the database.
Tip
Use ipython
to try this from the console, since it supports await
.
If you plan to modify the instance in the later execution of your program you can initiate your Model
as a normal class and later await a save()
call.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
course = Course(name="Painting for dummies", completed=False)
await course.save()
await Course.objects.create(name="Painting for dummies", completed=False)
|
If you want to initiate your Model
and at the same time save in in the database use a QuerySet's method create()
.
For creating multiple objects at once a bulk_create()
QuerySet's method is available.
Each model has a QuerySet
initialised as objects
parameter
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | import databases
import sqlalchemy
import ormar
database = databases.Database("sqlite:///db.sqlite")
metadata = sqlalchemy.MetaData()
class Course(ormar.Model):
class Meta:
database = database
metadata = metadata
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
completed: bool = ormar.Boolean(default=False)
course = Course(name="Painting for dummies", completed=False)
await course.save()
await Course.objects.create(name="Painting for dummies", completed=False)
|
Info
To read more about QuerySets
(including bulk operations) and available methods visit queries
Model
save status
Each model instance is a separate python object and they do not know anything about each other.
| track1 = await Track.objects.get(name='The Bird')
track2 = await Track.objects.get(name='The Bird')
assert track1 == track2 # True
track1.name = 'The Bird2'
await track1.save()
assert track1.name == track2.name # False
# track2 does not update and knows nothing about track1
|
The objects itself have a saved status, which is set as following:
- Model is saved after
save/update/load/upsert
method on model
- Model is saved after
create/get/first/all/get_or_create/update_or_create
method
- Model is saved when passed to
bulk_update
and bulk_create
- Model is saved after
adding/removing
ManyToMany
related objects (through model instance auto saved/deleted)
- Model is not saved after change of any own field (including
pk
as Model.pk
alias)
- Model is not saved after adding/removing
ForeignKey
related object (fk column not saved)
- Model is not saved after instantiation with
__init__
(w/o QuerySet.create
or before calling save
)
You can check if model is saved with ModelInstance.saved
property