Skip to content

models

Definition of Model, it's parents NewBaseModel and mixins used by models. Also defines a Metaclass that handles all constructions and relations registration, ass well as vast number of helper functions for pydantic, sqlalchemy and relations.

ExcludableItems

Keeps a dictionary of Excludables by alias + model_name keys to allow quick lookup by nested models without need to travers deeply nested dictionaries and passing include/exclude around

Source code in ormar/models/excludable.py
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
class ExcludableItems:
    """
    Keeps a dictionary of Excludables by alias + model_name keys
    to allow quick lookup by nested models without need to travers
    deeply nested dictionaries and passing include/exclude around
    """

    def __init__(self) -> None:
        self.items: Dict[str, Excludable] = dict()

    @classmethod
    def from_excludable(cls, other: "ExcludableItems") -> "ExcludableItems":
        """
        Copy passed ExcludableItems to avoid inplace modifications.

        :param other: other excludable items to be copied
        :type other: ormar.models.excludable.ExcludableItems
        :return: copy of other
        :rtype: ormar.models.excludable.ExcludableItems
        """
        new_excludable = cls()
        for key, value in other.items.items():
            new_excludable.items[key] = value.get_copy()
        return new_excludable

    def include_entry_count(self) -> int:
        """
        Returns count of include items inside
        """
        count = 0
        for key in self.items.keys():
            count += len(self.items[key].include)
        return count

    def get(self, model_cls: Type["Model"], alias: str = "") -> Excludable:
        """
        Return Excludable for given model and alias.

        :param model_cls: target model to check
        :type model_cls: ormar.models.metaclass.ModelMetaclass
        :param alias: table alias from relation manager
        :type alias: str
        :return: Excludable for given model and alias
        :rtype: ormar.models.excludable.Excludable
        """
        key = f"{alias + '_' if alias else ''}{model_cls.get_name(lower=True)}"
        excludable = self.items.get(key)
        if not excludable:
            excludable = Excludable()
            self.items[key] = excludable
        return excludable

    def build(
        self,
        items: Union[List[str], str, Tuple[str], Set[str], Dict],
        model_cls: Type["Model"],
        is_exclude: bool = False,
    ) -> None:
        """
        Receives the one of the types of items and parses them as to achieve
        a end situation with one excludable per alias/model in relation.

        Each excludable has two sets of values - one to include, one to exclude.

        :param items: values to be included or excluded
        :type items: Union[List[str], str, Tuple[str], Set[str], Dict]
        :param model_cls: source model from which relations are constructed
        :type model_cls: ormar.models.metaclass.ModelMetaclass
        :param is_exclude: flag if items should be included or excluded
        :type is_exclude: bool
        """
        if isinstance(items, str):
            items = {items}

        if isinstance(items, Dict):
            self._traverse_dict(
                values=items,
                source_model=model_cls,
                model_cls=model_cls,
                is_exclude=is_exclude,
            )

        else:
            items = set(items)
            nested_items = set(x for x in items if "__" in x)
            items.difference_update(nested_items)
            self._set_excludes(
                items=items,
                model_name=model_cls.get_name(lower=True),
                is_exclude=is_exclude,
            )
            if nested_items:
                self._traverse_list(
                    values=nested_items, model_cls=model_cls, is_exclude=is_exclude
                )

    def _set_excludes(
        self, items: Set, model_name: str, is_exclude: bool, alias: str = ""
    ) -> None:
        """
        Sets set of values to be included or excluded for given key and model.

        :param items: items to include/exclude
        :type items: set
        :param model_name: name of model to construct key
        :type model_name: str
        :param is_exclude: flag if values should be included or excluded
        :type is_exclude: bool
        :param alias:
        :type alias: str
        """
        key = f"{alias + '_' if alias else ''}{model_name}"
        excludable = self.items.get(key)
        if not excludable:
            excludable = Excludable()
        excludable.set_values(value=items, is_exclude=is_exclude)
        self.items[key] = excludable

    def _traverse_dict(  # noqa: CFQ002
        self,
        values: Dict,
        source_model: Type["Model"],
        model_cls: Type["Model"],
        is_exclude: bool,
        related_items: List = None,
        alias: str = "",
    ) -> None:
        """
        Goes through dict of nested values and construct/update Excludables.

        :param values: items to include/exclude
        :type values: Dict
        :param source_model: source model from which relations are constructed
        :type source_model: ormar.models.metaclass.ModelMetaclass
        :param model_cls: model from which current relation is constructed
        :type model_cls: ormar.models.metaclass.ModelMetaclass
        :param is_exclude: flag if values should be included or excluded
        :type is_exclude: bool
        :param related_items: list of names of related fields chain
        :type related_items: List
        :param alias: alias of relation
        :type alias: str
        """
        self_fields = set()
        related_items = related_items[:] if related_items else []
        for key, value in values.items():
            if value is ...:
                self_fields.add(key)
            elif isinstance(value, set):
                (
                    table_prefix,
                    target_model,
                    _,
                    _,
                ) = get_relationship_alias_model_and_str(
                    source_model=source_model, related_parts=related_items + [key]
                )
                self._set_excludes(
                    items=value,
                    model_name=target_model.get_name(),
                    is_exclude=is_exclude,
                    alias=table_prefix,
                )
            else:
                # dict
                related_items.append(key)
                (
                    table_prefix,
                    target_model,
                    _,
                    _,
                ) = get_relationship_alias_model_and_str(
                    source_model=source_model, related_parts=related_items
                )
                self._traverse_dict(
                    values=value,
                    source_model=source_model,
                    model_cls=target_model,
                    is_exclude=is_exclude,
                    related_items=related_items,
                    alias=table_prefix,
                )
        if self_fields:
            self._set_excludes(
                items=self_fields,
                model_name=model_cls.get_name(),
                is_exclude=is_exclude,
                alias=alias,
            )

    def _traverse_list(
        self, values: Set[str], model_cls: Type["Model"], is_exclude: bool
    ) -> None:
        """
        Goes through list of values and construct/update Excludables.

        :param values: items to include/exclude
        :type values: set
        :param model_cls: model from which current relation is constructed
        :type model_cls: ormar.models.metaclass.ModelMetaclass
        :param is_exclude: flag if values should be included or excluded
        :type is_exclude: bool
        """
        # here we have only nested related keys
        for key in values:
            key_split = key.split("__")
            related_items, field_name = key_split[:-1], key_split[-1]
            (table_prefix, target_model, _, _) = get_relationship_alias_model_and_str(
                source_model=model_cls, related_parts=related_items
            )
            self._set_excludes(
                items={field_name},
                model_name=target_model.get_name(),
                is_exclude=is_exclude,
                alias=table_prefix,
            )

build(items, model_cls, is_exclude=False)

Receives the one of the types of items and parses them as to achieve a end situation with one excludable per alias/model in relation.

Each excludable has two sets of values - one to include, one to exclude.

Parameters:

Name Type Description Default
items Union[List[str], str, Tuple[str], Set[str], Dict]

values to be included or excluded

required
model_cls Type['Model']

source model from which relations are constructed

required
is_exclude bool

flag if items should be included or excluded

False
Source code in ormar/models/excludable.py
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def build(
    self,
    items: Union[List[str], str, Tuple[str], Set[str], Dict],
    model_cls: Type["Model"],
    is_exclude: bool = False,
) -> None:
    """
    Receives the one of the types of items and parses them as to achieve
    a end situation with one excludable per alias/model in relation.

    Each excludable has two sets of values - one to include, one to exclude.

    :param items: values to be included or excluded
    :type items: Union[List[str], str, Tuple[str], Set[str], Dict]
    :param model_cls: source model from which relations are constructed
    :type model_cls: ormar.models.metaclass.ModelMetaclass
    :param is_exclude: flag if items should be included or excluded
    :type is_exclude: bool
    """
    if isinstance(items, str):
        items = {items}

    if isinstance(items, Dict):
        self._traverse_dict(
            values=items,
            source_model=model_cls,
            model_cls=model_cls,
            is_exclude=is_exclude,
        )

    else:
        items = set(items)
        nested_items = set(x for x in items if "__" in x)
        items.difference_update(nested_items)
        self._set_excludes(
            items=items,
            model_name=model_cls.get_name(lower=True),
            is_exclude=is_exclude,
        )
        if nested_items:
            self._traverse_list(
                values=nested_items, model_cls=model_cls, is_exclude=is_exclude
            )

from_excludable(other) classmethod

Copy passed ExcludableItems to avoid inplace modifications.

Parameters:

Name Type Description Default
other 'ExcludableItems'

other excludable items to be copied

required

Returns:

Type Description
ormar.models.excludable.ExcludableItems

copy of other

Source code in ormar/models/excludable.py
75
76
77
78
79
80
81
82
83
84
85
86
87
88
@classmethod
def from_excludable(cls, other: "ExcludableItems") -> "ExcludableItems":
    """
    Copy passed ExcludableItems to avoid inplace modifications.

    :param other: other excludable items to be copied
    :type other: ormar.models.excludable.ExcludableItems
    :return: copy of other
    :rtype: ormar.models.excludable.ExcludableItems
    """
    new_excludable = cls()
    for key, value in other.items.items():
        new_excludable.items[key] = value.get_copy()
    return new_excludable

get(model_cls, alias='')

Return Excludable for given model and alias.

Parameters:

Name Type Description Default
model_cls Type['Model']

target model to check

required
alias str

table alias from relation manager

''

Returns:

Type Description
ormar.models.excludable.Excludable

Excludable for given model and alias

Source code in ormar/models/excludable.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def get(self, model_cls: Type["Model"], alias: str = "") -> Excludable:
    """
    Return Excludable for given model and alias.

    :param model_cls: target model to check
    :type model_cls: ormar.models.metaclass.ModelMetaclass
    :param alias: table alias from relation manager
    :type alias: str
    :return: Excludable for given model and alias
    :rtype: ormar.models.excludable.Excludable
    """
    key = f"{alias + '_' if alias else ''}{model_cls.get_name(lower=True)}"
    excludable = self.items.get(key)
    if not excludable:
        excludable = Excludable()
        self.items[key] = excludable
    return excludable

include_entry_count()

Returns count of include items inside

Source code in ormar/models/excludable.py
90
91
92
93
94
95
96
97
def include_entry_count(self) -> int:
    """
    Returns count of include items inside
    """
    count = 0
    for key in self.items.keys():
        count += len(self.items[key].include)
    return count

Model

Bases: ModelRow

Source code in ormar/models/model.py
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
class Model(ModelRow):
    __abstract__ = False
    if TYPE_CHECKING:  # pragma nocover
        Meta: ModelMeta

    def __repr__(self) -> str:  # pragma nocover
        _repr = {
            k: getattr(self, k)
            for k, v in self.Meta.model_fields.items()
            if not v.skip_field
        }
        return f"{self.__class__.__name__}({str(_repr)})"

    async def upsert(self: T, **kwargs: Any) -> T:
        """
        Performs either a save or an update depending on the presence of the pk.
        If the pk field is filled it's an update, otherwise the save is performed.
        For save kwargs are ignored, used only in update if provided.

        :param kwargs: list of fields to update
        :type kwargs: Any
        :return: saved Model
        :rtype: Model
        """
        if not self.pk:
            return await self.save()
        return await self.update(**kwargs)

    async def save(self: T) -> T:
        """
        Performs a save of given Model instance.
        If primary key is already saved, db backend will throw integrity error.

        Related models are saved by pk number, reverse relation and many to many fields
        are not saved - use corresponding relations methods.

        If there are fields with server_default set and those fields
        are not already filled save will trigger also a second query
        to refreshed the fields populated server side.

        Does not recognize if model was previously saved.
        If you want to perform update or insert depending on the pk
        fields presence use upsert.

        Sends pre_save and post_save signals.

        Sets model save status to True.

        :return: saved Model
        :rtype: Model
        """
        await self.signals.pre_save.send(sender=self.__class__, instance=self)
        self_fields = self._extract_model_db_fields()

        if not self.pk and self.Meta.model_fields[self.Meta.pkname].autoincrement:
            self_fields.pop(self.Meta.pkname, None)
        self_fields = self.populate_default_values(self_fields)
        self.update_from_dict(
            {
                k: v
                for k, v in self_fields.items()
                if k not in self.extract_related_names()
            }
        )

        self_fields = self.translate_columns_to_aliases(self_fields)
        expr = self.Meta.table.insert()
        expr = expr.values(**self_fields)

        pk = await self.Meta.database.execute(expr)
        if pk and isinstance(pk, self.pk_type()):
            setattr(self, self.Meta.pkname, pk)

        self.set_save_status(True)
        # refresh server side defaults
        if any(
            field.server_default is not None
            for name, field in self.Meta.model_fields.items()
            if name not in self_fields
        ):
            await self.load()

        await self.signals.post_save.send(sender=self.__class__, instance=self)
        return self

    async def save_related(  # noqa: CCR001, CFQ002
        self,
        follow: bool = False,
        save_all: bool = False,
        relation_map: Dict = None,
        exclude: Union[Set, Dict] = None,
        update_count: int = 0,
        previous_model: "Model" = None,
        relation_field: Optional["ForeignKeyField"] = None,
    ) -> int:
        """
        Triggers a upsert method on all related models
        if the instances are not already saved.
        By default saves only the directly related ones.

        If follow=True is set it saves also related models of related models.

        To not get stuck in an infinite loop as related models also keep a relation
        to parent model visited models set is kept.

        That way already visited models that are nested are saved, but the save do not
        follow them inside. So Model A -> Model B -> Model A -> Model C will save second
        Model A but will never follow into Model C.
        Nested relations of those kind need to be persisted manually.

        :param relation_field: field with relation leading to this model
        :type relation_field: Optional[ForeignKeyField]
        :param previous_model: previous model from which method came
        :type previous_model: Model
        :param exclude: items to exclude during saving of relations
        :type exclude: Union[Set, Dict]
        :param relation_map: map of relations to follow
        :type relation_map: Dict
        :param save_all: flag if all models should be saved or only not saved ones
        :type save_all: bool
        :param follow: flag to trigger deep save -
        by default only directly related models are saved
        with follow=True also related models of related models are saved
        :type follow: bool
        :param update_count: internal parameter for recursive calls -
        number of updated instances
        :type update_count: int
        :return: number of updated/saved models
        :rtype: int
        """
        relation_map = (
            relation_map
            if relation_map is not None
            else translate_list_to_dict(self._iterate_related_models())
        )
        if exclude and isinstance(exclude, Set):
            exclude = translate_list_to_dict(exclude)
        relation_map = subtract_dict(relation_map, exclude or {})

        if relation_map:
            fields_to_visit = {
                field
                for field in self.extract_related_fields()
                if field.name in relation_map
            }
            pre_save = {
                field
                for field in fields_to_visit
                if not field.virtual and not field.is_multi
            }

            update_count = await self._update_relation_list(
                fields_list=pre_save,
                follow=follow,
                save_all=save_all,
                relation_map=relation_map,
                update_count=update_count,
            )

            update_count = await self._upsert_model(
                instance=self,
                save_all=save_all,
                previous_model=previous_model,
                relation_field=relation_field,
                update_count=update_count,
            )

            post_save = fields_to_visit - pre_save

            update_count = await self._update_relation_list(
                fields_list=post_save,
                follow=follow,
                save_all=save_all,
                relation_map=relation_map,
                update_count=update_count,
            )

        else:
            update_count = await self._upsert_model(
                instance=self,
                save_all=save_all,
                previous_model=previous_model,
                relation_field=relation_field,
                update_count=update_count,
            )

        return update_count

    async def update(self: T, _columns: List[str] = None, **kwargs: Any) -> T:
        """
        Performs update of Model instance in the database.
        Fields can be updated before or you can pass them as kwargs.

        Sends pre_update and post_update signals.

        Sets model save status to True.

        :param _columns: list of columns to update, if None all are updated
        :type _columns: List
        :raises ModelPersistenceError: If the pk column is not set

        :param kwargs: list of fields to update as field=value pairs
        :type kwargs: Any
        :return: updated Model
        :rtype: Model
        """
        if kwargs:
            self.update_from_dict(kwargs)

        if not self.pk:
            raise ModelPersistenceError(
                "You cannot update not saved model! Use save or upsert method."
            )

        await self.signals.pre_update.send(
            sender=self.__class__, instance=self, passed_args=kwargs
        )
        self_fields = self._extract_model_db_fields()
        self_fields.pop(self.get_column_name_from_alias(self.Meta.pkname))
        if _columns:
            self_fields = {k: v for k, v in self_fields.items() if k in _columns}
        self_fields = self.translate_columns_to_aliases(self_fields)
        expr = self.Meta.table.update().values(**self_fields)
        expr = expr.where(self.pk_column == getattr(self, self.Meta.pkname))

        await self.Meta.database.execute(expr)
        self.set_save_status(True)
        await self.signals.post_update.send(sender=self.__class__, instance=self)
        return self

    async def delete(self) -> int:
        """
        Removes the Model instance from the database.

        Sends pre_delete and post_delete signals.

        Sets model save status to False.

        Note it does not delete the Model itself (python object).
        So you can delete and later save (since pk is deleted no conflict will arise)
        or update and the Model will be saved in database again.

        :return: number of deleted rows (for some backends)
        :rtype: int
        """
        await self.signals.pre_delete.send(sender=self.__class__, instance=self)
        expr = self.Meta.table.delete()
        expr = expr.where(self.pk_column == (getattr(self, self.Meta.pkname)))
        result = await self.Meta.database.execute(expr)
        self.set_save_status(False)
        await self.signals.post_delete.send(sender=self.__class__, instance=self)
        return result

    async def load(self: T) -> T:
        """
        Allow to refresh existing Models fields from database.
        Be careful as the related models can be overwritten by pk_only models in load.
        Does NOT refresh the related models fields if they were loaded before.

        :raises NoMatch: If given pk is not found in database.

        :return: reloaded Model
        :rtype: Model
        """
        expr = self.Meta.table.select().where(self.pk_column == self.pk)
        row = await self.Meta.database.fetch_one(expr)
        if not row:  # pragma nocover
            raise NoMatch("Instance was deleted from database and cannot be refreshed")
        kwargs = dict(row)
        kwargs = self.translate_aliases_to_columns(kwargs)
        self.update_from_dict(kwargs)
        self.set_save_status(True)
        return self

    async def load_all(
        self: T,
        follow: bool = False,
        exclude: Union[List, str, Set, Dict] = None,
        order_by: Union[List, str] = None,
    ) -> T:
        """
        Allow to refresh existing Models fields from database.
        Performs refresh of the related models fields.

        By default loads only self and the directly related ones.

        If follow=True is set it loads also related models of related models.

        To not get stuck in an infinite loop as related models also keep a relation
        to parent model visited models set is kept.

        That way already visited models that are nested are loaded, but the load do not
        follow them inside. So Model A -> Model B -> Model C -> Model A -> Model X
        will load second Model A but will never follow into Model X.
        Nested relations of those kind need to be loaded manually.

        :param order_by: columns by which models should be sorted
        :type order_by: Union[List, str]
        :raises NoMatch: If given pk is not found in database.

        :param exclude: related models to exclude
        :type exclude: Union[List, str, Set, Dict]
        :param follow: flag to trigger deep save -
        by default only directly related models are saved
        with follow=True also related models of related models are saved
        :type follow: bool
        :return: reloaded Model
        :rtype: Model
        """
        relations = list(self.extract_related_names())
        if follow:
            relations = self._iterate_related_models()
        queryset = self.__class__.objects
        if exclude:
            queryset = queryset.exclude_fields(exclude)
        if order_by:
            queryset = queryset.order_by(order_by)
        instance = await queryset.select_related(relations).get(pk=self.pk)
        self._orm.clear()
        self.update_from_dict(instance.dict())
        return self

delete() async

Removes the Model instance from the database.

Sends pre_delete and post_delete signals.

Sets model save status to False.

Note it does not delete the Model itself (python object). So you can delete and later save (since pk is deleted no conflict will arise) or update and the Model will be saved in database again.

Returns:

Type Description
int

number of deleted rows (for some backends)

Source code in ormar/models/model.py
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
async def delete(self) -> int:
    """
    Removes the Model instance from the database.

    Sends pre_delete and post_delete signals.

    Sets model save status to False.

    Note it does not delete the Model itself (python object).
    So you can delete and later save (since pk is deleted no conflict will arise)
    or update and the Model will be saved in database again.

    :return: number of deleted rows (for some backends)
    :rtype: int
    """
    await self.signals.pre_delete.send(sender=self.__class__, instance=self)
    expr = self.Meta.table.delete()
    expr = expr.where(self.pk_column == (getattr(self, self.Meta.pkname)))
    result = await self.Meta.database.execute(expr)
    self.set_save_status(False)
    await self.signals.post_delete.send(sender=self.__class__, instance=self)
    return result

load() async

Allow to refresh existing Models fields from database. Be careful as the related models can be overwritten by pk_only models in load. Does NOT refresh the related models fields if they were loaded before.

Returns:

Type Description
Model

reloaded Model

Raises:

Type Description
NoMatch

If given pk is not found in database.

Source code in ormar/models/model.py
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
async def load(self: T) -> T:
    """
    Allow to refresh existing Models fields from database.
    Be careful as the related models can be overwritten by pk_only models in load.
    Does NOT refresh the related models fields if they were loaded before.

    :raises NoMatch: If given pk is not found in database.

    :return: reloaded Model
    :rtype: Model
    """
    expr = self.Meta.table.select().where(self.pk_column == self.pk)
    row = await self.Meta.database.fetch_one(expr)
    if not row:  # pragma nocover
        raise NoMatch("Instance was deleted from database and cannot be refreshed")
    kwargs = dict(row)
    kwargs = self.translate_aliases_to_columns(kwargs)
    self.update_from_dict(kwargs)
    self.set_save_status(True)
    return self

load_all(follow=False, exclude=None, order_by=None) async

Allow to refresh existing Models fields from database. Performs refresh of the related models fields.

By default loads only self and the directly related ones.

If follow=True is set it loads also related models of related models.

To not get stuck in an infinite loop as related models also keep a relation to parent model visited models set is kept.

That way already visited models that are nested are loaded, but the load do not follow them inside. So Model A -> Model B -> Model C -> Model A -> Model X will load second Model A but will never follow into Model X. Nested relations of those kind need to be loaded manually.

Parameters:

Name Type Description Default
order_by Union[List, str]

columns by which models should be sorted

None
exclude Union[List, str, Set, Dict]

related models to exclude

None
follow bool

flag to trigger deep save - by default only directly related models are saved with follow=True also related models of related models are saved

False

Returns:

Type Description
Model

reloaded Model

Raises:

Type Description
NoMatch

If given pk is not found in database.

Source code in ormar/models/model.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
async def load_all(
    self: T,
    follow: bool = False,
    exclude: Union[List, str, Set, Dict] = None,
    order_by: Union[List, str] = None,
) -> T:
    """
    Allow to refresh existing Models fields from database.
    Performs refresh of the related models fields.

    By default loads only self and the directly related ones.

    If follow=True is set it loads also related models of related models.

    To not get stuck in an infinite loop as related models also keep a relation
    to parent model visited models set is kept.

    That way already visited models that are nested are loaded, but the load do not
    follow them inside. So Model A -> Model B -> Model C -> Model A -> Model X
    will load second Model A but will never follow into Model X.
    Nested relations of those kind need to be loaded manually.

    :param order_by: columns by which models should be sorted
    :type order_by: Union[List, str]
    :raises NoMatch: If given pk is not found in database.

    :param exclude: related models to exclude
    :type exclude: Union[List, str, Set, Dict]
    :param follow: flag to trigger deep save -
    by default only directly related models are saved
    with follow=True also related models of related models are saved
    :type follow: bool
    :return: reloaded Model
    :rtype: Model
    """
    relations = list(self.extract_related_names())
    if follow:
        relations = self._iterate_related_models()
    queryset = self.__class__.objects
    if exclude:
        queryset = queryset.exclude_fields(exclude)
    if order_by:
        queryset = queryset.order_by(order_by)
    instance = await queryset.select_related(relations).get(pk=self.pk)
    self._orm.clear()
    self.update_from_dict(instance.dict())
    return self

save() async

Performs a save of given Model instance. If primary key is already saved, db backend will throw integrity error.

Related models are saved by pk number, reverse relation and many to many fields are not saved - use corresponding relations methods.

If there are fields with server_default set and those fields are not already filled save will trigger also a second query to refreshed the fields populated server side.

Does not recognize if model was previously saved. If you want to perform update or insert depending on the pk fields presence use upsert.

Sends pre_save and post_save signals.

Sets model save status to True.

Returns:

Type Description
Model

saved Model

Source code in ormar/models/model.py
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
async def save(self: T) -> T:
    """
    Performs a save of given Model instance.
    If primary key is already saved, db backend will throw integrity error.

    Related models are saved by pk number, reverse relation and many to many fields
    are not saved - use corresponding relations methods.

    If there are fields with server_default set and those fields
    are not already filled save will trigger also a second query
    to refreshed the fields populated server side.

    Does not recognize if model was previously saved.
    If you want to perform update or insert depending on the pk
    fields presence use upsert.

    Sends pre_save and post_save signals.

    Sets model save status to True.

    :return: saved Model
    :rtype: Model
    """
    await self.signals.pre_save.send(sender=self.__class__, instance=self)
    self_fields = self._extract_model_db_fields()

    if not self.pk and self.Meta.model_fields[self.Meta.pkname].autoincrement:
        self_fields.pop(self.Meta.pkname, None)
    self_fields = self.populate_default_values(self_fields)
    self.update_from_dict(
        {
            k: v
            for k, v in self_fields.items()
            if k not in self.extract_related_names()
        }
    )

    self_fields = self.translate_columns_to_aliases(self_fields)
    expr = self.Meta.table.insert()
    expr = expr.values(**self_fields)

    pk = await self.Meta.database.execute(expr)
    if pk and isinstance(pk, self.pk_type()):
        setattr(self, self.Meta.pkname, pk)

    self.set_save_status(True)
    # refresh server side defaults
    if any(
        field.server_default is not None
        for name, field in self.Meta.model_fields.items()
        if name not in self_fields
    ):
        await self.load()

    await self.signals.post_save.send(sender=self.__class__, instance=self)
    return self

Triggers a upsert method on all related models if the instances are not already saved. By default saves only the directly related ones.

If follow=True is set it saves also related models of related models.

To not get stuck in an infinite loop as related models also keep a relation to parent model visited models set is kept.

That way already visited models that are nested are saved, but the save do not follow them inside. So Model A -> Model B -> Model A -> Model C will save second Model A but will never follow into Model C. Nested relations of those kind need to be persisted manually.

Parameters:

Name Type Description Default
relation_field Optional['ForeignKeyField']

field with relation leading to this model

None
previous_model 'Model'

previous model from which method came

None
exclude Union[Set, Dict]

items to exclude during saving of relations

None
relation_map Dict

map of relations to follow

None
save_all bool

flag if all models should be saved or only not saved ones

False
follow bool

flag to trigger deep save - by default only directly related models are saved with follow=True also related models of related models are saved

False
update_count int

internal parameter for recursive calls - number of updated instances

0

Returns:

Type Description
int

number of updated/saved models

Source code in ormar/models/model.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
async def save_related(  # noqa: CCR001, CFQ002
    self,
    follow: bool = False,
    save_all: bool = False,
    relation_map: Dict = None,
    exclude: Union[Set, Dict] = None,
    update_count: int = 0,
    previous_model: "Model" = None,
    relation_field: Optional["ForeignKeyField"] = None,
) -> int:
    """
    Triggers a upsert method on all related models
    if the instances are not already saved.
    By default saves only the directly related ones.

    If follow=True is set it saves also related models of related models.

    To not get stuck in an infinite loop as related models also keep a relation
    to parent model visited models set is kept.

    That way already visited models that are nested are saved, but the save do not
    follow them inside. So Model A -> Model B -> Model A -> Model C will save second
    Model A but will never follow into Model C.
    Nested relations of those kind need to be persisted manually.

    :param relation_field: field with relation leading to this model
    :type relation_field: Optional[ForeignKeyField]
    :param previous_model: previous model from which method came
    :type previous_model: Model
    :param exclude: items to exclude during saving of relations
    :type exclude: Union[Set, Dict]
    :param relation_map: map of relations to follow
    :type relation_map: Dict
    :param save_all: flag if all models should be saved or only not saved ones
    :type save_all: bool
    :param follow: flag to trigger deep save -
    by default only directly related models are saved
    with follow=True also related models of related models are saved
    :type follow: bool
    :param update_count: internal parameter for recursive calls -
    number of updated instances
    :type update_count: int
    :return: number of updated/saved models
    :rtype: int
    """
    relation_map = (
        relation_map
        if relation_map is not None
        else translate_list_to_dict(self._iterate_related_models())
    )
    if exclude and isinstance(exclude, Set):
        exclude = translate_list_to_dict(exclude)
    relation_map = subtract_dict(relation_map, exclude or {})

    if relation_map:
        fields_to_visit = {
            field
            for field in self.extract_related_fields()
            if field.name in relation_map
        }
        pre_save = {
            field
            for field in fields_to_visit
            if not field.virtual and not field.is_multi
        }

        update_count = await self._update_relation_list(
            fields_list=pre_save,
            follow=follow,
            save_all=save_all,
            relation_map=relation_map,
            update_count=update_count,
        )

        update_count = await self._upsert_model(
            instance=self,
            save_all=save_all,
            previous_model=previous_model,
            relation_field=relation_field,
            update_count=update_count,
        )

        post_save = fields_to_visit - pre_save

        update_count = await self._update_relation_list(
            fields_list=post_save,
            follow=follow,
            save_all=save_all,
            relation_map=relation_map,
            update_count=update_count,
        )

    else:
        update_count = await self._upsert_model(
            instance=self,
            save_all=save_all,
            previous_model=previous_model,
            relation_field=relation_field,
            update_count=update_count,
        )

    return update_count

update(_columns=None, **kwargs) async

Performs update of Model instance in the database. Fields can be updated before or you can pass them as kwargs.

Sends pre_update and post_update signals.

Sets model save status to True.

Parameters:

Name Type Description Default
_columns List[str]

list of columns to update, if None all are updated

None
kwargs Any

list of fields to update as field=value pairs

required

Returns:

Type Description
Model

updated Model

Raises:

Type Description
ModelPersistenceError

If the pk column is not set

Source code in ormar/models/model.py
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
async def update(self: T, _columns: List[str] = None, **kwargs: Any) -> T:
    """
    Performs update of Model instance in the database.
    Fields can be updated before or you can pass them as kwargs.

    Sends pre_update and post_update signals.

    Sets model save status to True.

    :param _columns: list of columns to update, if None all are updated
    :type _columns: List
    :raises ModelPersistenceError: If the pk column is not set

    :param kwargs: list of fields to update as field=value pairs
    :type kwargs: Any
    :return: updated Model
    :rtype: Model
    """
    if kwargs:
        self.update_from_dict(kwargs)

    if not self.pk:
        raise ModelPersistenceError(
            "You cannot update not saved model! Use save or upsert method."
        )

    await self.signals.pre_update.send(
        sender=self.__class__, instance=self, passed_args=kwargs
    )
    self_fields = self._extract_model_db_fields()
    self_fields.pop(self.get_column_name_from_alias(self.Meta.pkname))
    if _columns:
        self_fields = {k: v for k, v in self_fields.items() if k in _columns}
    self_fields = self.translate_columns_to_aliases(self_fields)
    expr = self.Meta.table.update().values(**self_fields)
    expr = expr.where(self.pk_column == getattr(self, self.Meta.pkname))

    await self.Meta.database.execute(expr)
    self.set_save_status(True)
    await self.signals.post_update.send(sender=self.__class__, instance=self)
    return self

upsert(**kwargs) async

Performs either a save or an update depending on the presence of the pk. If the pk field is filled it's an update, otherwise the save is performed. For save kwargs are ignored, used only in update if provided.

Parameters:

Name Type Description Default
kwargs Any

list of fields to update

required

Returns:

Type Description
Model

saved Model

Source code in ormar/models/model.py
29
30
31
32
33
34
35
36
37
38
39
40
41
42
async def upsert(self: T, **kwargs: Any) -> T:
    """
    Performs either a save or an update depending on the presence of the pk.
    If the pk field is filled it's an update, otherwise the save is performed.
    For save kwargs are ignored, used only in update if provided.

    :param kwargs: list of fields to update
    :type kwargs: Any
    :return: saved Model
    :rtype: Model
    """
    if not self.pk:
        return await self.save()
    return await self.update(**kwargs)

ModelRow

Bases: NewBaseModel

Source code in ormar/models/model_row.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
class ModelRow(NewBaseModel):
    @classmethod
    def from_row(  # noqa: CFQ002
        cls,
        row: ResultProxy,
        source_model: Type["Model"],
        select_related: List = None,
        related_models: Any = None,
        related_field: "ForeignKeyField" = None,
        excludable: ExcludableItems = None,
        current_relation_str: str = "",
        proxy_source_model: Optional[Type["Model"]] = None,
        used_prefixes: List[str] = None,
    ) -> Optional["Model"]:
        """
        Model method to convert raw sql row from database into ormar.Model instance.
        Traverses nested models if they were specified in select_related for query.

        Called recurrently and returns model instance if it's present in the row.
        Note that it's processing one row at a time, so if there are duplicates of
        parent row that needs to be joined/combined
        (like parent row in sql join with 2+ child rows)
        instances populated in this method are later combined in the QuerySet.
        Other method working directly on raw database results is in prefetch_query,
        where rows are populated in a different way as they do not have
        nested models in result.

        :param used_prefixes: list of already extracted prefixes
        :type used_prefixes: List[str]
        :param proxy_source_model: source model from which querysetproxy is constructed
        :type proxy_source_model: Optional[Type["ModelRow"]]
        :param excludable: structure of fields to include and exclude
        :type excludable: ExcludableItems
        :param current_relation_str: name of the relation field
        :type current_relation_str: str
        :param source_model: model on which relation was defined
        :type source_model: Type[Model]
        :param row: raw result row from the database
        :type row: ResultProxy
        :param select_related: list of names of related models fetched from database
        :type select_related: List
        :param related_models: list or dict of related models
        :type related_models: Union[List, Dict]
        :param related_field: field with relation declaration
        :type related_field: ForeignKeyField
        :return: returns model if model is populated from database
        :rtype: Optional[Model]
        """
        item: Dict[str, Any] = {}
        select_related = select_related or []
        related_models = related_models or []
        table_prefix = ""
        used_prefixes = used_prefixes if used_prefixes is not None else []
        excludable = excludable or ExcludableItems()

        if select_related:
            related_models = group_related_list(select_related)

        if related_field:
            table_prefix = cls._process_table_prefix(
                source_model=source_model,
                current_relation_str=current_relation_str,
                related_field=related_field,
                used_prefixes=used_prefixes,
            )

        item = cls._populate_nested_models_from_row(
            item=item,
            row=row,
            related_models=related_models,
            excludable=excludable,
            current_relation_str=current_relation_str,
            source_model=source_model,  # type: ignore
            proxy_source_model=proxy_source_model,  # type: ignore
            table_prefix=table_prefix,
            used_prefixes=used_prefixes,
        )
        item = cls.extract_prefixed_table_columns(
            item=item, row=row, table_prefix=table_prefix, excludable=excludable
        )

        instance: Optional["Model"] = None
        if item.get(cls.Meta.pkname, None) is not None:
            item["__excluded__"] = cls.get_names_to_exclude(
                excludable=excludable, alias=table_prefix
            )
            instance = cast("Model", cls(**item))
            instance.set_save_status(True)
        return instance

    @classmethod
    def _process_table_prefix(
        cls,
        source_model: Type["Model"],
        current_relation_str: str,
        related_field: "ForeignKeyField",
        used_prefixes: List[str],
    ) -> str:
        """

        :param source_model: model on which relation was defined
        :type source_model: Type[Model]
        :param current_relation_str: current relation string
        :type current_relation_str: str
        :param related_field: field with relation declaration
        :type related_field: "ForeignKeyField"
        :param used_prefixes: list of already extracted prefixes
        :type used_prefixes: List[str]
        :return: table_prefix to use
        :rtype: str
        """
        if related_field.is_multi:
            previous_model = related_field.through
        else:
            previous_model = related_field.owner
        table_prefix = cls.Meta.alias_manager.resolve_relation_alias(
            from_model=previous_model, relation_name=related_field.name
        )
        if not table_prefix or table_prefix in used_prefixes:
            manager = cls.Meta.alias_manager
            table_prefix = manager.resolve_relation_alias_after_complex(
                source_model=source_model,
                relation_str=current_relation_str,
                relation_field=related_field,
            )
        used_prefixes.append(table_prefix)
        return table_prefix

    @classmethod
    def _populate_nested_models_from_row(  # noqa: CFQ002
        cls,
        item: dict,
        row: ResultProxy,
        source_model: Type["Model"],
        related_models: Any,
        excludable: ExcludableItems,
        table_prefix: str,
        used_prefixes: List[str],
        current_relation_str: str = None,
        proxy_source_model: Type["Model"] = None,
    ) -> dict:
        """
        Traverses structure of related models and populates the nested models
        from the database row.
        Related models can be a list if only directly related models are to be
        populated, converted to dict if related models also have their own related
        models to be populated.

        Recurrently calls from_row method on nested instances and create nested
        instances. In the end those instances are added to the final model dictionary.

        :param proxy_source_model: source model from which querysetproxy is constructed
        :type proxy_source_model: Optional[Type["ModelRow"]]
        :param excludable: structure of fields to include and exclude
        :type excludable: ExcludableItems
        :param source_model: source model from which relation started
        :type source_model: Type[Model]
        :param current_relation_str: joined related parts into one string
        :type current_relation_str: str
        :param item: dictionary of already populated nested models, otherwise empty dict
        :type item: Dict
        :param row: raw result row from the database
        :type row: ResultProxy
        :param related_models: list or dict of related models
        :type related_models: Union[Dict, List]
        :return: dictionary with keys corresponding to model fields names
        and values are database values
        :rtype: Dict
        """

        for related in related_models:
            field = cls.Meta.model_fields[related]
            field = cast("ForeignKeyField", field)
            model_cls = field.to
            model_excludable = excludable.get(
                model_cls=cast(Type["Model"], cls), alias=table_prefix
            )
            if model_excludable.is_excluded(related):
                return item

            relation_str, remainder = cls._process_remainder_and_relation_string(
                related_models=related_models,
                current_relation_str=current_relation_str,
                related=related,
            )
            child = model_cls.from_row(
                row,
                related_models=remainder,
                related_field=field,
                excludable=excludable,
                current_relation_str=relation_str,
                source_model=source_model,
                proxy_source_model=proxy_source_model,
                used_prefixes=used_prefixes,
            )
            item[model_cls.get_column_name_from_alias(related)] = child
            if (
                field.is_multi
                and child
                and not model_excludable.is_excluded(field.through.get_name())
            ):
                cls._populate_through_instance(
                    row=row,
                    item=item,
                    related=related,
                    excludable=excludable,
                    child=child,
                    proxy_source_model=proxy_source_model,
                )

        return item

    @staticmethod
    def _process_remainder_and_relation_string(
        related_models: Union[Dict, List],
        current_relation_str: Optional[str],
        related: str,
    ) -> Tuple[str, Optional[Union[Dict, List]]]:
        """
        Process remainder models and relation string

        :param related_models: list or dict of related models
        :type related_models: Union[Dict, List]
        :param current_relation_str: current relation string
        :type current_relation_str: Optional[str]
        :param related: name of the relation
        :type related: str
        """
        relation_str = (
            "__".join([current_relation_str, related])
            if current_relation_str
            else related
        )

        remainder = None
        if isinstance(related_models, dict) and related_models[related]:
            remainder = related_models[related]
        return relation_str, remainder

    @classmethod
    def _populate_through_instance(  # noqa: CFQ002
        cls,
        row: ResultProxy,
        item: Dict,
        related: str,
        excludable: ExcludableItems,
        child: "Model",
        proxy_source_model: Optional[Type["Model"]],
    ) -> None:
        """
        Populates the through model on reverse side of current query.
        Normally it's child class, unless the query is from queryset.

        :param row: row from db result
        :type row: ResultProxy
        :param item: parent item dict
        :type item: Dict
        :param related: current relation name
        :type related: str
        :param excludable: structure of fields to include and exclude
        :type excludable: ExcludableItems
        :param child: child item of parent
        :type child: "Model"
        :param proxy_source_model: source model from which querysetproxy is constructed
        :type proxy_source_model: Type["Model"]
        """
        through_name = cls.Meta.model_fields[related].through.get_name()
        through_child = cls._create_through_instance(
            row=row, related=related, through_name=through_name, excludable=excludable
        )

        if child.__class__ != proxy_source_model:
            setattr(child, through_name, through_child)
        else:
            item[through_name] = through_child
        child.set_save_status(True)

    @classmethod
    def _create_through_instance(
        cls,
        row: ResultProxy,
        through_name: str,
        related: str,
        excludable: ExcludableItems,
    ) -> "ModelRow":
        """
        Initialize the through model from db row.
        Excluded all relation fields and other exclude/include set in excludable.

        :param row: loaded row from database
        :type row: sqlalchemy.engine.ResultProxy
        :param through_name: name of the through field
        :type through_name: str
        :param related: name of the relation
        :type related: str
        :param excludable: structure of fields to include and exclude
        :type excludable: ExcludableItems
        :return: initialized through model without relation
        :rtype: "ModelRow"
        """
        model_cls = cls.Meta.model_fields[through_name].to
        table_prefix = cls.Meta.alias_manager.resolve_relation_alias(
            from_model=cls, relation_name=related
        )
        # remove relations on through field
        model_excludable = excludable.get(model_cls=model_cls, alias=table_prefix)
        model_excludable.set_values(
            value=model_cls.extract_related_names(), is_exclude=True
        )
        child_dict = model_cls.extract_prefixed_table_columns(
            item={}, row=row, excludable=excludable, table_prefix=table_prefix
        )
        child_dict["__excluded__"] = model_cls.get_names_to_exclude(
            excludable=excludable, alias=table_prefix
        )
        child = model_cls(**child_dict)  # type: ignore
        return child

    @classmethod
    def extract_prefixed_table_columns(
        cls,
        item: dict,
        row: ResultProxy,
        table_prefix: str,
        excludable: ExcludableItems,
    ) -> Dict:
        """
        Extracts own fields from raw sql result, using a given prefix.
        Prefix changes depending on the table's position in a join.

        If the table is a main table, there is no prefix.
        All joined tables have prefixes to allow duplicate column names,
        as well as duplicated joins to the same table from multiple different tables.

        Extracted fields populates the related dict later used to construct a Model.

        Used in Model.from_row and PrefetchQuery._populate_rows methods.

        :param excludable: structure of fields to include and exclude
        :type excludable: ExcludableItems
        :param item: dictionary of already populated nested models, otherwise empty dict
        :type item: Dict
        :param row: raw result row from the database
        :type row: sqlalchemy.engine.result.ResultProxy
        :param table_prefix: prefix of the table from AliasManager
        each pair of tables have own prefix (two of them depending on direction) -
        used in joins to allow multiple joins to the same table.
        :type table_prefix: str
        :return: dictionary with keys corresponding to model fields names
        and values are database values
        :rtype: Dict
        """
        selected_columns = cls.own_table_columns(
            model=cls, excludable=excludable, alias=table_prefix, use_alias=False
        )

        column_prefix = table_prefix + "_" if table_prefix else ""
        for column in cls.Meta.table.columns:
            alias = cls.get_column_name_from_alias(column.name)
            if alias not in item and alias in selected_columns:
                prefixed_name = f"{column_prefix}{column.name}"
                item[alias] = row[prefixed_name]

        return item

extract_prefixed_table_columns(item, row, table_prefix, excludable) classmethod

Extracts own fields from raw sql result, using a given prefix. Prefix changes depending on the table's position in a join.

If the table is a main table, there is no prefix. All joined tables have prefixes to allow duplicate column names, as well as duplicated joins to the same table from multiple different tables.

Extracted fields populates the related dict later used to construct a Model.

Used in Model.from_row and PrefetchQuery._populate_rows methods.

Parameters:

Name Type Description Default
excludable ExcludableItems

structure of fields to include and exclude

required
item dict

dictionary of already populated nested models, otherwise empty dict

required
row ResultProxy

raw result row from the database

required
table_prefix str

prefix of the table from AliasManager each pair of tables have own prefix (two of them depending on direction) - used in joins to allow multiple joins to the same table.

required

Returns:

Type Description
Dict

dictionary with keys corresponding to model fields names and values are database values

Source code in ormar/models/model_row.py
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
@classmethod
def extract_prefixed_table_columns(
    cls,
    item: dict,
    row: ResultProxy,
    table_prefix: str,
    excludable: ExcludableItems,
) -> Dict:
    """
    Extracts own fields from raw sql result, using a given prefix.
    Prefix changes depending on the table's position in a join.

    If the table is a main table, there is no prefix.
    All joined tables have prefixes to allow duplicate column names,
    as well as duplicated joins to the same table from multiple different tables.

    Extracted fields populates the related dict later used to construct a Model.

    Used in Model.from_row and PrefetchQuery._populate_rows methods.

    :param excludable: structure of fields to include and exclude
    :type excludable: ExcludableItems
    :param item: dictionary of already populated nested models, otherwise empty dict
    :type item: Dict
    :param row: raw result row from the database
    :type row: sqlalchemy.engine.result.ResultProxy
    :param table_prefix: prefix of the table from AliasManager
    each pair of tables have own prefix (two of them depending on direction) -
    used in joins to allow multiple joins to the same table.
    :type table_prefix: str
    :return: dictionary with keys corresponding to model fields names
    and values are database values
    :rtype: Dict
    """
    selected_columns = cls.own_table_columns(
        model=cls, excludable=excludable, alias=table_prefix, use_alias=False
    )

    column_prefix = table_prefix + "_" if table_prefix else ""
    for column in cls.Meta.table.columns:
        alias = cls.get_column_name_from_alias(column.name)
        if alias not in item and alias in selected_columns:
            prefixed_name = f"{column_prefix}{column.name}"
            item[alias] = row[prefixed_name]

    return item

from_row(row, source_model, select_related=None, related_models=None, related_field=None, excludable=None, current_relation_str='', proxy_source_model=None, used_prefixes=None) classmethod

Model method to convert raw sql row from database into ormar.Model instance. Traverses nested models if they were specified in select_related for query.

Called recurrently and returns model instance if it's present in the row. Note that it's processing one row at a time, so if there are duplicates of parent row that needs to be joined/combined (like parent row in sql join with 2+ child rows) instances populated in this method are later combined in the QuerySet. Other method working directly on raw database results is in prefetch_query, where rows are populated in a different way as they do not have nested models in result.

Parameters:

Name Type Description Default
used_prefixes List[str]

list of already extracted prefixes

None
proxy_source_model Optional[Type['Model']]

source model from which querysetproxy is constructed

None
excludable ExcludableItems

structure of fields to include and exclude

None
current_relation_str str

name of the relation field

''
source_model Type['Model']

model on which relation was defined

required
row ResultProxy

raw result row from the database

required
select_related List

list of names of related models fetched from database

None
related_models Any

list or dict of related models

None
related_field 'ForeignKeyField'

field with relation declaration

None

Returns:

Type Description
Optional[Model]

returns model if model is populated from database

Source code in ormar/models/model_row.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
@classmethod
def from_row(  # noqa: CFQ002
    cls,
    row: ResultProxy,
    source_model: Type["Model"],
    select_related: List = None,
    related_models: Any = None,
    related_field: "ForeignKeyField" = None,
    excludable: ExcludableItems = None,
    current_relation_str: str = "",
    proxy_source_model: Optional[Type["Model"]] = None,
    used_prefixes: List[str] = None,
) -> Optional["Model"]:
    """
    Model method to convert raw sql row from database into ormar.Model instance.
    Traverses nested models if they were specified in select_related for query.

    Called recurrently and returns model instance if it's present in the row.
    Note that it's processing one row at a time, so if there are duplicates of
    parent row that needs to be joined/combined
    (like parent row in sql join with 2+ child rows)
    instances populated in this method are later combined in the QuerySet.
    Other method working directly on raw database results is in prefetch_query,
    where rows are populated in a different way as they do not have
    nested models in result.

    :param used_prefixes: list of already extracted prefixes
    :type used_prefixes: List[str]
    :param proxy_source_model: source model from which querysetproxy is constructed
    :type proxy_source_model: Optional[Type["ModelRow"]]
    :param excludable: structure of fields to include and exclude
    :type excludable: ExcludableItems
    :param current_relation_str: name of the relation field
    :type current_relation_str: str
    :param source_model: model on which relation was defined
    :type source_model: Type[Model]
    :param row: raw result row from the database
    :type row: ResultProxy
    :param select_related: list of names of related models fetched from database
    :type select_related: List
    :param related_models: list or dict of related models
    :type related_models: Union[List, Dict]
    :param related_field: field with relation declaration
    :type related_field: ForeignKeyField
    :return: returns model if model is populated from database
    :rtype: Optional[Model]
    """
    item: Dict[str, Any] = {}
    select_related = select_related or []
    related_models = related_models or []
    table_prefix = ""
    used_prefixes = used_prefixes if used_prefixes is not None else []
    excludable = excludable or ExcludableItems()

    if select_related:
        related_models = group_related_list(select_related)

    if related_field:
        table_prefix = cls._process_table_prefix(
            source_model=source_model,
            current_relation_str=current_relation_str,
            related_field=related_field,
            used_prefixes=used_prefixes,
        )

    item = cls._populate_nested_models_from_row(
        item=item,
        row=row,
        related_models=related_models,
        excludable=excludable,
        current_relation_str=current_relation_str,
        source_model=source_model,  # type: ignore
        proxy_source_model=proxy_source_model,  # type: ignore
        table_prefix=table_prefix,
        used_prefixes=used_prefixes,
    )
    item = cls.extract_prefixed_table_columns(
        item=item, row=row, table_prefix=table_prefix, excludable=excludable
    )

    instance: Optional["Model"] = None
    if item.get(cls.Meta.pkname, None) is not None:
        item["__excluded__"] = cls.get_names_to_exclude(
            excludable=excludable, alias=table_prefix
        )
        instance = cast("Model", cls(**item))
        instance.set_save_status(True)
    return instance

NewBaseModel

Bases: pydantic.BaseModel, ModelTableProxy

Main base class of ormar Model. Inherits from pydantic BaseModel and has all mixins combined in ModelTableProxy. Constructed with ModelMetaclass which in turn also inherits pydantic metaclass.

Abstracts away all internals and helper functions, so final Model class has only the logic concerned with database connection and data persistance.

Source code in ormar/models/newbasemodel.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
class NewBaseModel(pydantic.BaseModel, ModelTableProxy, metaclass=ModelMetaclass):
    """
    Main base class of ormar Model.
    Inherits from pydantic BaseModel and has all mixins combined in ModelTableProxy.
    Constructed with ModelMetaclass which in turn also inherits pydantic metaclass.

    Abstracts away all internals and helper functions, so final Model class has only
    the logic concerned with database connection and data persistance.
    """

    __slots__ = ("_orm_id", "_orm_saved", "_orm", "_pk_column", "__pk_only__")

    if TYPE_CHECKING:  # pragma no cover
        pk: Any
        __model_fields__: Dict[str, BaseField]
        __table__: sqlalchemy.Table
        __pydantic_model__: Type[BaseModel]
        __pkname__: str
        __tablename__: str
        __metadata__: sqlalchemy.MetaData
        __database__: databases.Database
        __relation_map__: Optional[List[str]]
        _orm_relationship_manager: AliasManager
        _orm: RelationsManager
        _orm_id: int
        _orm_saved: bool
        _related_names: Optional[Set]
        _through_names: Optional[Set]
        _related_names_hash: str
        _choices_fields: Set
        _pydantic_fields: Set
        _quick_access_fields: Set
        _json_fields: Set
        _bytes_fields: Set
        Meta: ModelMeta

    # noinspection PyMissingConstructor
    def __init__(self, *args: Any, **kwargs: Any) -> None:  # type: ignore
        """
        Initializer that creates a new ormar Model that is also pydantic Model at the
        same time.

        Passed keyword arguments can be only field names and their corresponding values
        as those will be passed to pydantic validation that will complain if extra
        params are passed.

        If relations are defined each relation is expanded and children models are also
        initialized and validated. Relation from both sides is registered so you can
        access related models from both sides.

        Json fields are automatically loaded/dumped if needed.

        Models marked as abstract=True in internal Meta class cannot be initialized.

        Accepts also special __pk_only__ flag that indicates that Model is constructed
        only with primary key value (so no other fields, it's a child model on other
        Model), that causes skipping the validation, that's the only case when the
        validation can be skipped.

        Accepts also special __excluded__ parameter that contains a set of fields that
        should be explicitly set to None, as otherwise pydantic will try to populate
        them with their default values if default is set.

        :raises ModelError: if abstract model is initialized, model has ForwardRefs
         that has not been updated or unknown field is passed
        :param args: ignored args
        :type args: Any
        :param kwargs: keyword arguments - all fields values and some special params
        :type kwargs: Any
        """
        self._verify_model_can_be_initialized()
        self._initialize_internal_attributes()

        pk_only = kwargs.pop("__pk_only__", False)
        object.__setattr__(self, "__pk_only__", pk_only)

        new_kwargs, through_tmp_dict = self._process_kwargs(kwargs)

        if not pk_only:
            values, fields_set, validation_error = pydantic.validate_model(
                self, new_kwargs  # type: ignore
            )
            if validation_error:
                raise validation_error
        else:
            fields_set = {self.Meta.pkname}
            values = new_kwargs

        object.__setattr__(self, "__dict__", values)
        object.__setattr__(self, "__fields_set__", fields_set)

        # add back through fields
        new_kwargs.update(through_tmp_dict)
        model_fields = object.__getattribute__(self, "Meta").model_fields
        # register the columns models after initialization
        for related in self.extract_related_names().union(self.extract_through_names()):
            model_fields[related].expand_relationship(
                new_kwargs.get(related), self, to_register=True
            )

        if hasattr(self, "_init_private_attributes"):
            # introduced in pydantic 1.7
            self._init_private_attributes()

    def __setattr__(self, name: str, value: Any) -> None:  # noqa CCR001
        """
        Overwrites setattr in pydantic parent as otherwise descriptors are not called.

        :param name: name of the attribute to set
        :type name: str
        :param value: value of the attribute to set
        :type value: Any
        :return: None
        :rtype: None
        """
        if hasattr(self, name):
            object.__setattr__(self, name, value)
        else:
            # let pydantic handle errors for unknown fields
            super().__setattr__(name, value)

    def __getattr__(self, item: str) -> Any:
        """
        Used only to silence mypy errors for Through models and reverse relations.
        Not used in real life as in practice calls are intercepted
        by RelationDescriptors

        :param item: name of attribute
        :type item: str
        :return: Any
        :rtype: Any
        """
        return super().__getattribute__(item)

    def __getstate__(self) -> Dict[Any, Any]:
        state = super().__getstate__()
        self_dict = self.dict()
        state["__dict__"].update(**self_dict)
        return state

    def __setstate__(self, state: Dict[Any, Any]) -> None:
        relations = {
            k: v
            for k, v in state["__dict__"].items()
            if k in self.extract_related_names()
        }
        basic_state = {
            k: v
            for k, v in state["__dict__"].items()
            if k not in self.extract_related_names()
        }
        state["__dict__"] = basic_state
        super().__setstate__(state)
        self._initialize_internal_attributes()
        for name, value in relations.items():
            setattr(self, name, value)

    def _internal_set(self, name: str, value: Any) -> None:
        """
        Delegates call to pydantic.

        :param name: name of param
        :type name: str
        :param value: value to set
        :type value: Any
        """
        super().__setattr__(name, value)

    def _verify_model_can_be_initialized(self) -> None:
        """
        Raises exception if model is abstract or has ForwardRefs in relation fields.

        :return: None
        :rtype: None
        """
        if self.Meta.abstract:
            raise ModelError(f"You cannot initialize abstract model {self.get_name()}")
        if self.Meta.requires_ref_update:
            raise ModelError(
                f"Model {self.get_name()} has not updated "
                f"ForwardRefs. \nBefore using the model you "
                f"need to call update_forward_refs()."
            )

    def _process_kwargs(self, kwargs: Dict) -> Tuple[Dict, Dict]:  # noqa: CCR001
        """
        Initializes nested models.

        Removes property_fields

        Checks if field is in the model fields or pydatnic fields.

        Nullifies fields that should be excluded.

        Extracts through models from kwargs into temporary dict.

        :param kwargs: passed to init keyword arguments
        :type kwargs: Dict
        :return: modified kwargs
        :rtype: Tuple[Dict, Dict]
        """
        property_fields = self.Meta.property_fields
        model_fields = self.Meta.model_fields
        pydantic_fields = set(self.__fields__.keys())

        # remove property fields
        for prop_filed in property_fields:
            kwargs.pop(prop_filed, None)

        excluded: Set[str] = kwargs.pop("__excluded__", set())
        if "pk" in kwargs:
            kwargs[self.Meta.pkname] = kwargs.pop("pk")

        # extract through fields
        through_tmp_dict = dict()
        for field_name in self.extract_through_names():
            through_tmp_dict[field_name] = kwargs.pop(field_name, None)

        kwargs = self._remove_extra_parameters_if_they_should_be_ignored(
            kwargs=kwargs, model_fields=model_fields, pydantic_fields=pydantic_fields
        )
        try:
            new_kwargs: Dict[str, Any] = {
                k: self._convert_to_bytes(
                    k,
                    self._convert_json(
                        k,
                        model_fields[k].expand_relationship(v, self, to_register=False)
                        if k in model_fields
                        else (v if k in pydantic_fields else model_fields[k]),
                    ),
                )
                for k, v in kwargs.items()
            }
        except KeyError as e:
            raise ModelError(
                f"Unknown field '{e.args[0]}' for model {self.get_name(lower=False)}"
            )

        # explicitly set None to excluded fields
        # as pydantic populates them with default if set
        for field_to_nullify in excluded:
            new_kwargs[field_to_nullify] = None

        return new_kwargs, through_tmp_dict

    def _remove_extra_parameters_if_they_should_be_ignored(
        self, kwargs: Dict, model_fields: Dict, pydantic_fields: Set
    ) -> Dict:
        """
        Removes the extra fields from kwargs if they should be ignored.

        :param kwargs: passed arguments
        :type kwargs: Dict
        :param model_fields: dictionary of model fields
        :type model_fields: Dict
        :param pydantic_fields: set of pydantic fields names
        :type pydantic_fields: Set
        :return: dict without extra fields
        :rtype: Dict
        """
        if self.Meta.extra == Extra.ignore:
            kwargs = {
                k: v
                for k, v in kwargs.items()
                if k in model_fields or k in pydantic_fields
            }
        return kwargs

    def _initialize_internal_attributes(self) -> None:
        """
        Initializes internal attributes during __init__()
        :rtype: None
        """
        # object.__setattr__(self, "_orm_id", uuid.uuid4().hex)
        object.__setattr__(self, "_orm_saved", False)
        object.__setattr__(self, "_pk_column", None)
        object.__setattr__(
            self,
            "_orm",
            RelationsManager(
                related_fields=self.extract_related_fields(), owner=cast("Model", self)
            ),
        )

    def __eq__(self, other: object) -> bool:
        """
        Compares other model to this model. when == is called.
        :param other: other model to compare
        :type other: object
        :return: result of comparison
        :rtype: bool
        """
        if isinstance(other, NewBaseModel):
            return self.__same__(other)
        return super().__eq__(other)  # pragma no cover

    def __same__(self, other: "NewBaseModel") -> bool:
        """
        Used by __eq__, compares other model to this model.
        Compares:
        * _orm_ids,
        * primary key values if it's set
        * dictionary of own fields (excluding relations)
        :param other: model to compare to
        :type other: NewBaseModel
        :return: result of comparison
        :rtype: bool
        """
        return (
            # self._orm_id == other._orm_id
            (self.pk == other.pk and self.pk is not None)
            or (
                (self.pk is None and other.pk is None)
                and {
                    k: v
                    for k, v in self.__dict__.items()
                    if k not in self.extract_related_names()
                }
                == {
                    k: v
                    for k, v in other.__dict__.items()
                    if k not in other.extract_related_names()
                }
            )
        )

    def _copy_and_set_values(
        self: "NewBaseModel", values: "DictStrAny", fields_set: "SetStr", *, deep: bool
    ) -> "NewBaseModel":
        """
        Overwrite related models values with dict representation to avoid infinite
        recursion through related fields.
        """
        self_dict = values
        self_dict.update(self.dict())
        return cast(
            "NewBaseModel",
            super()._copy_and_set_values(
                values=self_dict, fields_set=fields_set, deep=deep
            ),
        )

    @classmethod
    def get_name(cls, lower: bool = True) -> str:
        """
        Returns name of the Model class, by default lowercase.

        :param lower: flag if name should be set to lowercase
        :type lower: bool
        :return: name of the model
        :rtype: str
        """
        name = cls.__name__
        if lower:
            name = name.lower()
        return name

    @property
    def pk_column(self) -> sqlalchemy.Column:
        """
        Retrieves primary key sqlalchemy column from models Meta.table.
        Each model has to have primary key.
        Only one primary key column is allowed.

        :return: primary key sqlalchemy column
        :rtype: sqlalchemy.Column
        """
        if object.__getattribute__(self, "_pk_column") is not None:
            return object.__getattribute__(self, "_pk_column")
        pk_columns = self.Meta.table.primary_key.columns.values()
        pk_col = pk_columns[0]
        object.__setattr__(self, "_pk_column", pk_col)
        return pk_col

    @property
    def saved(self) -> bool:
        """Saved status of the model. Changed by setattr and loading from db"""
        return self._orm_saved

    @property
    def signals(self) -> "SignalEmitter":
        """Exposes signals from model Meta"""
        return self.Meta.signals

    @classmethod
    def pk_type(cls) -> Any:
        """Shortcut to models primary key field type"""
        return cls.Meta.model_fields[cls.Meta.pkname].__type__

    @classmethod
    def db_backend_name(cls) -> str:
        """Shortcut to database dialect,
        cause some dialect require different treatment"""
        return cls.Meta.database._backend._dialect.name

    def remove(self, parent: "Model", name: str) -> None:
        """Removes child from relation with given name in RelationshipManager"""
        self._orm.remove_parent(self, parent, name)

    def set_save_status(self, status: bool) -> None:
        """Sets value of the save status"""
        object.__setattr__(self, "_orm_saved", status)

    @classmethod
    def get_properties(
        cls, include: Union[Set, Dict, None], exclude: Union[Set, Dict, None]
    ) -> Set[str]:
        """
        Returns a set of names of functions/fields decorated with
        @property_field decorator.

        They are added to dictionary when called directly and therefore also are
        present in fastapi responses.

        :param include: fields to include
        :type include: Union[Set, Dict, None]
        :param exclude: fields to exclude
        :type exclude: Union[Set, Dict, None]
        :return: set of property fields names
        :rtype: Set[str]
        """

        props = cls.Meta.property_fields
        if include:
            props = {prop for prop in props if prop in include}
        if exclude:
            props = {prop for prop in props if prop not in exclude}
        return props

    @classmethod
    def update_forward_refs(cls, **localns: Any) -> None:
        """
        Processes fields that are ForwardRef and need to be evaluated into actual
        models.

        Expands relationships, register relation in alias manager and substitutes
        sqlalchemy columns with new ones with proper column type (null before).

        Populates Meta table of the Model which is left empty before.

        Sets self_reference flag on models that links to themselves.

        Calls the pydantic method to evaluate pydantic fields.

        :param localns: local namespace
        :type localns: Any
        :return: None
        :rtype: None
        """
        globalns = sys.modules[cls.__module__].__dict__.copy()
        globalns.setdefault(cls.__name__, cls)
        fields_to_check = cls.Meta.model_fields.copy()
        for field in fields_to_check.values():
            if field.has_unresolved_forward_refs():
                field = cast(ForeignKeyField, field)
                field.evaluate_forward_ref(globalns=globalns, localns=localns)
                field.set_self_reference_flag()
                if field.is_multi and not field.through:
                    field = cast(ormar.ManyToManyField, field)
                    field.create_default_through_model()
                expand_reverse_relationship(model_field=field)
                register_relation_in_alias_manager(field=field)
                update_column_definition(model=cls, field=field)
        populate_meta_sqlalchemy_table_if_required(meta=cls.Meta)
        super().update_forward_refs(**localns)
        cls.Meta.requires_ref_update = False

    @staticmethod
    def _get_not_excluded_fields(
        fields: Union[List, Set], include: Optional[Dict], exclude: Optional[Dict]
    ) -> List:
        """
        Returns related field names applying on them include and exclude set.

        :param include: fields to include
        :type include: Union[Set, Dict, None]
        :param exclude: fields to exclude
        :type exclude: Union[Set, Dict, None]
        :return:
        :rtype: List of fields with relations that is not excluded
        """
        fields = [*fields] if not isinstance(fields, list) else fields
        if include:
            fields = [field for field in fields if field in include]
        if exclude:
            fields = [
                field
                for field in fields
                if field not in exclude
                or (
                    exclude.get(field) is not Ellipsis
                    and exclude.get(field) != {"__all__"}
                )
            ]
        return fields

    @staticmethod
    def _extract_nested_models_from_list(
        relation_map: Dict,
        models: MutableSequence,
        include: Union[Set, Dict, None],
        exclude: Union[Set, Dict, None],
        exclude_primary_keys: bool,
        exclude_through_models: bool,
    ) -> List:
        """
        Converts list of models into list of dictionaries.

        :param models: List of models
        :type models: List
        :param include: fields to include
        :type include: Union[Set, Dict, None]
        :param exclude: fields to exclude
        :type exclude: Union[Set, Dict, None]
        :return: list of models converted to dictionaries
        :rtype: List[Dict]
        """
        result = []
        for model in models:
            try:
                result.append(
                    model.dict(
                        relation_map=relation_map,
                        include=include,
                        exclude=exclude,
                        exclude_primary_keys=exclude_primary_keys,
                        exclude_through_models=exclude_through_models,
                    )
                )
            except ReferenceError:  # pragma no cover
                continue
        return result

    @classmethod
    def _skip_ellipsis(
        cls, items: Union[Set, Dict, None], key: str, default_return: Any = None
    ) -> Union[Set, Dict, None]:
        """
        Helper to traverse the include/exclude dictionaries.
        In dict() Ellipsis should be skipped as it indicates all fields required
        and not the actual set/dict with fields names.

        :param items: current include/exclude value
        :type items: Union[Set, Dict, None]
        :param key: key for nested relations to check
        :type key: str
        :return: nested value of the items
        :rtype: Union[Set, Dict, None]
        """
        result = cls.get_child(items, key)
        return result if result is not Ellipsis else default_return

    @staticmethod
    def _convert_all(items: Union[Set, Dict, None]) -> Union[Set, Dict, None]:
        """
        Helper to convert __all__ pydantic special index to ormar which does not
        support index based exclusions.

        :param items: current include/exclude value
        :type items: Union[Set, Dict, None]
        """
        if isinstance(items, dict) and "__all__" in items:
            return items.get("__all__")
        return items

    def _extract_nested_models(  # noqa: CCR001, CFQ002
        self,
        relation_map: Dict,
        dict_instance: Dict,
        include: Optional[Dict],
        exclude: Optional[Dict],
        exclude_primary_keys: bool,
        exclude_through_models: bool,
    ) -> Dict:
        """
        Traverse nested models and converts them into dictionaries.
        Calls itself recursively if needed.

        :param nested: flag if current instance is nested
        :type nested: bool
        :param dict_instance: current instance dict
        :type dict_instance: Dict
        :param include: fields to include
        :type include: Optional[Dict]
        :param exclude: fields to exclude
        :type exclude: Optional[Dict]
        :return: current model dict with child models converted to dictionaries
        :rtype: Dict
        """
        fields = self._get_not_excluded_fields(
            fields=self.extract_related_names(), include=include, exclude=exclude
        )

        for field in fields:
            if not relation_map or field not in relation_map:
                continue
            try:
                nested_model = getattr(self, field)
                if isinstance(nested_model, MutableSequence):
                    dict_instance[field] = self._extract_nested_models_from_list(
                        relation_map=self._skip_ellipsis(  # type: ignore
                            relation_map, field, default_return=dict()
                        ),
                        models=nested_model,
                        include=self._convert_all(self._skip_ellipsis(include, field)),
                        exclude=self._convert_all(self._skip_ellipsis(exclude, field)),
                        exclude_primary_keys=exclude_primary_keys,
                        exclude_through_models=exclude_through_models,
                    )
                elif nested_model is not None:

                    dict_instance[field] = nested_model.dict(
                        relation_map=self._skip_ellipsis(
                            relation_map, field, default_return=dict()
                        ),
                        include=self._convert_all(self._skip_ellipsis(include, field)),
                        exclude=self._convert_all(self._skip_ellipsis(exclude, field)),
                        exclude_primary_keys=exclude_primary_keys,
                        exclude_through_models=exclude_through_models,
                    )
                else:
                    dict_instance[field] = None
            except ReferenceError:
                dict_instance[field] = None
        return dict_instance

    def dict(  # type: ignore # noqa A003
        self,
        *,
        include: Union[Set, Dict] = None,
        exclude: Union[Set, Dict] = None,
        by_alias: bool = False,
        skip_defaults: bool = None,
        exclude_unset: bool = False,
        exclude_defaults: bool = False,
        exclude_none: bool = False,
        exclude_primary_keys: bool = False,
        exclude_through_models: bool = False,
        relation_map: Dict = None,
    ) -> "DictStrAny":  # noqa: A003'
        """

        Generate a dictionary representation of the model,
        optionally specifying which fields to include or exclude.

        Nested models are also parsed to dictionaries.

        Additionally fields decorated with @property_field are also added.

        :param exclude_through_models: flag to exclude through models from dict
        :type exclude_through_models: bool
        :param exclude_primary_keys: flag to exclude primary keys from dict
        :type exclude_primary_keys: bool
        :param include: fields to include
        :type include: Union[Set, Dict, None]
        :param exclude: fields to exclude
        :type exclude: Union[Set, Dict, None]
        :param by_alias: flag to get values by alias - passed to pydantic
        :type by_alias: bool
        :param skip_defaults: flag to not set values - passed to pydantic
        :type skip_defaults: bool
        :param exclude_unset: flag to exclude not set values - passed to pydantic
        :type exclude_unset: bool
        :param exclude_defaults: flag to exclude default values - passed to pydantic
        :type exclude_defaults: bool
        :param exclude_none: flag to exclude None values - passed to pydantic
        :type exclude_none: bool
        :param relation_map: map of the relations to follow to avoid circural deps
        :type relation_map: Dict
        :return:
        :rtype:
        """
        pydantic_exclude = self._update_excluded_with_related(exclude)
        pydantic_exclude = self._update_excluded_with_pks_and_through(
            exclude=pydantic_exclude,
            exclude_primary_keys=exclude_primary_keys,
            exclude_through_models=exclude_through_models,
        )
        dict_instance = super().dict(
            include=include,
            exclude=pydantic_exclude,
            by_alias=by_alias,
            skip_defaults=skip_defaults,
            exclude_unset=exclude_unset,
            exclude_defaults=exclude_defaults,
            exclude_none=exclude_none,
        )

        dict_instance = {
            k: self._convert_bytes_to_str(column_name=k, value=v)
            for k, v in dict_instance.items()
        }

        if include and isinstance(include, Set):
            include = translate_list_to_dict(include)
        if exclude and isinstance(exclude, Set):
            exclude = translate_list_to_dict(exclude)

        relation_map = (
            relation_map
            if relation_map is not None
            else translate_list_to_dict(self._iterate_related_models())
        )
        pk_only = getattr(self, "__pk_only__", False)
        if relation_map and not pk_only:
            dict_instance = self._extract_nested_models(
                relation_map=relation_map,
                dict_instance=dict_instance,
                include=include,  # type: ignore
                exclude=exclude,  # type: ignore
                exclude_primary_keys=exclude_primary_keys,
                exclude_through_models=exclude_through_models,
            )

        # include model properties as fields in dict
        if object.__getattribute__(self, "Meta").property_fields:
            props = self.get_properties(include=include, exclude=exclude)
            if props:
                dict_instance.update({prop: getattr(self, prop) for prop in props})

        return dict_instance

    def json(  # type: ignore # noqa A003
        self,
        *,
        include: Union[Set, Dict] = None,
        exclude: Union[Set, Dict] = None,
        by_alias: bool = False,
        skip_defaults: bool = None,
        exclude_unset: bool = False,
        exclude_defaults: bool = False,
        exclude_none: bool = False,
        encoder: Optional[Callable[[Any], Any]] = None,
        exclude_primary_keys: bool = False,
        exclude_through_models: bool = False,
        **dumps_kwargs: Any,
    ) -> str:
        """
        Generate a JSON representation of the model, `include` and `exclude`
        arguments as per `dict()`.

        `encoder` is an optional function to supply as `default` to json.dumps(),
        other arguments as per `json.dumps()`.
        """
        if skip_defaults is not None:  # pragma: no cover
            warnings.warn(
                f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated '
                f'and replaced by "exclude_unset"',
                DeprecationWarning,
            )
            exclude_unset = skip_defaults
        encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__)
        data = self.dict(
            include=include,
            exclude=exclude,
            by_alias=by_alias,
            exclude_unset=exclude_unset,
            exclude_defaults=exclude_defaults,
            exclude_none=exclude_none,
            exclude_primary_keys=exclude_primary_keys,
            exclude_through_models=exclude_through_models,
        )
        if self.__custom_root_type__:  # pragma: no cover
            data = data["__root__"]
        return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs)

    @classmethod
    def construct(
        cls: Type["T"], _fields_set: Optional["SetStr"] = None, **values: Any
    ) -> "T":
        own_values = {
            k: v for k, v in values.items() if k not in cls.extract_related_names()
        }
        model = cls.__new__(cls)
        fields_values: Dict[str, Any] = {}
        for name, field in cls.__fields__.items():
            if name in own_values:
                fields_values[name] = own_values[name]
            elif not field.required:
                fields_values[name] = field.get_default()
        fields_values.update(own_values)
        object.__setattr__(model, "__dict__", fields_values)
        model._initialize_internal_attributes()
        cls._construct_relations(model=model, values=values)
        if _fields_set is None:
            _fields_set = set(values.keys())
        object.__setattr__(model, "__fields_set__", _fields_set)
        return model

    @classmethod
    def _construct_relations(cls: Type["T"], model: "T", values: Dict) -> None:
        present_relations = [
            relation for relation in cls.extract_related_names() if relation in values
        ]
        for relation in present_relations:
            value_to_set = values[relation]
            if not isinstance(value_to_set, list):
                value_to_set = [value_to_set]
            relation_field = cls.Meta.model_fields[relation]
            relation_value = [
                relation_field.expand_relationship(x, model, to_register=False)
                for x in value_to_set
            ]

            for child in relation_value:
                model._orm.add(
                    parent=cast("Model", child),
                    child=cast("Model", model),
                    field=cast("ForeignKeyField", relation_field),
                )

    def update_from_dict(self, value_dict: Dict) -> "NewBaseModel":
        """
        Updates self with values of fields passed in the dictionary.

        :param value_dict: dictionary of fields names and values
        :type value_dict: Dict
        :return: self
        :rtype: NewBaseModel
        """
        for key, value in value_dict.items():
            setattr(self, key, value)
        return self

    def _convert_to_bytes(self, column_name: str, value: Any) -> Union[str, Dict]:
        """
        Converts value to bytes from string

        :param column_name: name of the field
        :type column_name: str
        :param value: value fo the field
        :type value: Any
        :return: converted value if needed, else original value
        :rtype: Any
        """
        if column_name not in self._bytes_fields:
            return value
        field = self.Meta.model_fields[column_name]
        if not isinstance(value, bytes) and value is not None:
            if field.represent_as_base64_str:
                value = base64.b64decode(value)
            else:
                value = value.encode("utf-8")
        return value

    def _convert_bytes_to_str(self, column_name: str, value: Any) -> Union[str, Dict]:
        """
        Converts value to str from bytes for represent_as_base64_str columns.

        :param column_name: name of the field
        :type column_name: str
        :param value: value fo the field
        :type value: Any
        :return: converted value if needed, else original value
        :rtype: Any
        """
        if column_name not in self._bytes_fields:
            return value
        field = self.Meta.model_fields[column_name]
        if (
            value is not None
            and not isinstance(value, str)
            and field.represent_as_base64_str
        ):
            return base64.b64encode(value).decode()
        return value

    def _convert_json(self, column_name: str, value: Any) -> Union[str, Dict, None]:
        """
        Converts value to/from json if needed (for Json columns).

        :param column_name: name of the field
        :type column_name: str
        :param value: value fo the field
        :type value: Any
        :return: converted value if needed, else original value
        :rtype: Any
        """
        if column_name not in self._json_fields:
            return value
        return encode_json(value)

    def _extract_own_model_fields(self) -> Dict:
        """
        Returns a dictionary with field names and values for fields that are not
        relations fields (ForeignKey, ManyToMany etc.)

        :return: dictionary of fields names and values.
        :rtype: Dict
        """
        related_names = self.extract_related_names()
        self_fields = {k: v for k, v in self.__dict__.items() if k not in related_names}
        return self_fields

    def _extract_model_db_fields(self) -> Dict:
        """
        Returns a dictionary with field names and values for fields that are stored in
        current model's table.

        That includes own non-relational fields ang foreign key fields.

        :return: dictionary of fields names and values.
        :rtype: Dict
        """
        # TODO: Cache this dictionary?
        self_fields = self._extract_own_model_fields()
        self_fields = {
            k: v
            for k, v in self_fields.items()
            if self.get_column_alias(k) in self.Meta.table.columns
        }
        for field in self._extract_db_related_names():
            relation_field = self.Meta.model_fields[field]
            target_pk_name = relation_field.to.Meta.pkname
            target_field = getattr(self, field)
            self_fields[field] = getattr(target_field, target_pk_name, None)
            if not relation_field.nullable and not self_fields[field]:
                raise ModelPersistenceError(
                    f"You cannot save {relation_field.to.get_name()} "
                    f"model without pk set!"
                )
        return self_fields

    def get_relation_model_id(self, target_field: "BaseField") -> Optional[int]:
        """
        Returns an id of the relation side model to use in prefetch query.

        :param target_field: field with relation definition
        :type target_field: "BaseField"
        :return: value of pk if set
        :rtype: Optional[int]
        """
        if target_field.virtual or target_field.is_multi:
            return self.pk
        related_name = target_field.name
        related_model = getattr(self, related_name)
        return None if not related_model else related_model.pk

__eq__(other)

Compares other model to this model. when == is called.

Parameters:

Name Type Description Default
other object

other model to compare

required

Returns:

Type Description
bool

result of comparison

Source code in ormar/models/newbasemodel.py
346
347
348
349
350
351
352
353
354
355
356
def __eq__(self, other: object) -> bool:
    """
    Compares other model to this model. when == is called.
    :param other: other model to compare
    :type other: object
    :return: result of comparison
    :rtype: bool
    """
    if isinstance(other, NewBaseModel):
        return self.__same__(other)
    return super().__eq__(other)  # pragma no cover

__getattr__(item)

Used only to silence mypy errors for Through models and reverse relations. Not used in real life as in practice calls are intercepted by RelationDescriptors

Parameters:

Name Type Description Default
item str

name of attribute

required

Returns:

Type Description
Any

Any

Source code in ormar/models/newbasemodel.py
182
183
184
185
186
187
188
189
190
191
192
193
def __getattr__(self, item: str) -> Any:
    """
    Used only to silence mypy errors for Through models and reverse relations.
    Not used in real life as in practice calls are intercepted
    by RelationDescriptors

    :param item: name of attribute
    :type item: str
    :return: Any
    :rtype: Any
    """
    return super().__getattribute__(item)

__init__(*args, **kwargs)

Initializer that creates a new ormar Model that is also pydantic Model at the same time.

Passed keyword arguments can be only field names and their corresponding values as those will be passed to pydantic validation that will complain if extra params are passed.

If relations are defined each relation is expanded and children models are also initialized and validated. Relation from both sides is registered so you can access related models from both sides.

Json fields are automatically loaded/dumped if needed.

Models marked as abstract=True in internal Meta class cannot be initialized.

Accepts also special pk_only flag that indicates that Model is constructed only with primary key value (so no other fields, it's a child model on other Model), that causes skipping the validation, that's the only case when the validation can be skipped.

Accepts also special excluded parameter that contains a set of fields that should be explicitly set to None, as otherwise pydantic will try to populate them with their default values if default is set.

Parameters:

Name Type Description Default
args Any

ignored args

required
kwargs Any

keyword arguments - all fields values and some special params

required

Raises:

Type Description
ModelError

if abstract model is initialized, model has ForwardRefs that has not been updated or unknown field is passed

Source code in ormar/models/newbasemodel.py
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def __init__(self, *args: Any, **kwargs: Any) -> None:  # type: ignore
    """
    Initializer that creates a new ormar Model that is also pydantic Model at the
    same time.

    Passed keyword arguments can be only field names and their corresponding values
    as those will be passed to pydantic validation that will complain if extra
    params are passed.

    If relations are defined each relation is expanded and children models are also
    initialized and validated. Relation from both sides is registered so you can
    access related models from both sides.

    Json fields are automatically loaded/dumped if needed.

    Models marked as abstract=True in internal Meta class cannot be initialized.

    Accepts also special __pk_only__ flag that indicates that Model is constructed
    only with primary key value (so no other fields, it's a child model on other
    Model), that causes skipping the validation, that's the only case when the
    validation can be skipped.

    Accepts also special __excluded__ parameter that contains a set of fields that
    should be explicitly set to None, as otherwise pydantic will try to populate
    them with their default values if default is set.

    :raises ModelError: if abstract model is initialized, model has ForwardRefs
     that has not been updated or unknown field is passed
    :param args: ignored args
    :type args: Any
    :param kwargs: keyword arguments - all fields values and some special params
    :type kwargs: Any
    """
    self._verify_model_can_be_initialized()
    self._initialize_internal_attributes()

    pk_only = kwargs.pop("__pk_only__", False)
    object.__setattr__(self, "__pk_only__", pk_only)

    new_kwargs, through_tmp_dict = self._process_kwargs(kwargs)

    if not pk_only:
        values, fields_set, validation_error = pydantic.validate_model(
            self, new_kwargs  # type: ignore
        )
        if validation_error:
            raise validation_error
    else:
        fields_set = {self.Meta.pkname}
        values = new_kwargs

    object.__setattr__(self, "__dict__", values)
    object.__setattr__(self, "__fields_set__", fields_set)

    # add back through fields
    new_kwargs.update(through_tmp_dict)
    model_fields = object.__getattribute__(self, "Meta").model_fields
    # register the columns models after initialization
    for related in self.extract_related_names().union(self.extract_through_names()):
        model_fields[related].expand_relationship(
            new_kwargs.get(related), self, to_register=True
        )

    if hasattr(self, "_init_private_attributes"):
        # introduced in pydantic 1.7
        self._init_private_attributes()

__same__(other)

Used by eq, compares other model to this model. Compares: * _orm_ids, * primary key values if it's set * dictionary of own fields (excluding relations)

Parameters:

Name Type Description Default
other 'NewBaseModel'

model to compare to

required

Returns:

Type Description
bool

result of comparison

Source code in ormar/models/newbasemodel.py
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
def __same__(self, other: "NewBaseModel") -> bool:
    """
    Used by __eq__, compares other model to this model.
    Compares:
    * _orm_ids,
    * primary key values if it's set
    * dictionary of own fields (excluding relations)
    :param other: model to compare to
    :type other: NewBaseModel
    :return: result of comparison
    :rtype: bool
    """
    return (
        # self._orm_id == other._orm_id
        (self.pk == other.pk and self.pk is not None)
        or (
            (self.pk is None and other.pk is None)
            and {
                k: v
                for k, v in self.__dict__.items()
                if k not in self.extract_related_names()
            }
            == {
                k: v
                for k, v in other.__dict__.items()
                if k not in other.extract_related_names()
            }
        )
    )

__setattr__(name, value)

Overwrites setattr in pydantic parent as otherwise descriptors are not called.

Parameters:

Name Type Description Default
name str

name of the attribute to set

required
value Any

value of the attribute to set

required

Returns:

Type Description
None

None

Source code in ormar/models/newbasemodel.py
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def __setattr__(self, name: str, value: Any) -> None:  # noqa CCR001
    """
    Overwrites setattr in pydantic parent as otherwise descriptors are not called.

    :param name: name of the attribute to set
    :type name: str
    :param value: value of the attribute to set
    :type value: Any
    :return: None
    :rtype: None
    """
    if hasattr(self, name):
        object.__setattr__(self, name, value)
    else:
        # let pydantic handle errors for unknown fields
        super().__setattr__(name, value)

db_backend_name() classmethod

Shortcut to database dialect, cause some dialect require different treatment

Source code in ormar/models/newbasemodel.py
451
452
453
454
455
@classmethod
def db_backend_name(cls) -> str:
    """Shortcut to database dialect,
    cause some dialect require different treatment"""
    return cls.Meta.database._backend._dialect.name

dict(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, exclude_primary_keys=False, exclude_through_models=False, relation_map=None)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Nested models are also parsed to dictionaries.

Additionally fields decorated with @property_field are also added.

Parameters:

Name Type Description Default
exclude_through_models bool

flag to exclude through models from dict

False
exclude_primary_keys bool

flag to exclude primary keys from dict

False
include Union[Set, Dict]

fields to include

None
exclude Union[Set, Dict]

fields to exclude

None
by_alias bool

flag to get values by alias - passed to pydantic

False
skip_defaults bool

flag to not set values - passed to pydantic

None
exclude_unset bool

flag to exclude not set values - passed to pydantic

False
exclude_defaults bool

flag to exclude default values - passed to pydantic

False
exclude_none bool

flag to exclude None values - passed to pydantic

False
relation_map Dict

map of the relations to follow to avoid circural deps

None

Returns:

Type Description
Source code in ormar/models/newbasemodel.py
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
def dict(  # type: ignore # noqa A003
    self,
    *,
    include: Union[Set, Dict] = None,
    exclude: Union[Set, Dict] = None,
    by_alias: bool = False,
    skip_defaults: bool = None,
    exclude_unset: bool = False,
    exclude_defaults: bool = False,
    exclude_none: bool = False,
    exclude_primary_keys: bool = False,
    exclude_through_models: bool = False,
    relation_map: Dict = None,
) -> "DictStrAny":  # noqa: A003'
    """

    Generate a dictionary representation of the model,
    optionally specifying which fields to include or exclude.

    Nested models are also parsed to dictionaries.

    Additionally fields decorated with @property_field are also added.

    :param exclude_through_models: flag to exclude through models from dict
    :type exclude_through_models: bool
    :param exclude_primary_keys: flag to exclude primary keys from dict
    :type exclude_primary_keys: bool
    :param include: fields to include
    :type include: Union[Set, Dict, None]
    :param exclude: fields to exclude
    :type exclude: Union[Set, Dict, None]
    :param by_alias: flag to get values by alias - passed to pydantic
    :type by_alias: bool
    :param skip_defaults: flag to not set values - passed to pydantic
    :type skip_defaults: bool
    :param exclude_unset: flag to exclude not set values - passed to pydantic
    :type exclude_unset: bool
    :param exclude_defaults: flag to exclude default values - passed to pydantic
    :type exclude_defaults: bool
    :param exclude_none: flag to exclude None values - passed to pydantic
    :type exclude_none: bool
    :param relation_map: map of the relations to follow to avoid circural deps
    :type relation_map: Dict
    :return:
    :rtype:
    """
    pydantic_exclude = self._update_excluded_with_related(exclude)
    pydantic_exclude = self._update_excluded_with_pks_and_through(
        exclude=pydantic_exclude,
        exclude_primary_keys=exclude_primary_keys,
        exclude_through_models=exclude_through_models,
    )
    dict_instance = super().dict(
        include=include,
        exclude=pydantic_exclude,
        by_alias=by_alias,
        skip_defaults=skip_defaults,
        exclude_unset=exclude_unset,
        exclude_defaults=exclude_defaults,
        exclude_none=exclude_none,
    )

    dict_instance = {
        k: self._convert_bytes_to_str(column_name=k, value=v)
        for k, v in dict_instance.items()
    }

    if include and isinstance(include, Set):
        include = translate_list_to_dict(include)
    if exclude and isinstance(exclude, Set):
        exclude = translate_list_to_dict(exclude)

    relation_map = (
        relation_map
        if relation_map is not None
        else translate_list_to_dict(self._iterate_related_models())
    )
    pk_only = getattr(self, "__pk_only__", False)
    if relation_map and not pk_only:
        dict_instance = self._extract_nested_models(
            relation_map=relation_map,
            dict_instance=dict_instance,
            include=include,  # type: ignore
            exclude=exclude,  # type: ignore
            exclude_primary_keys=exclude_primary_keys,
            exclude_through_models=exclude_through_models,
        )

    # include model properties as fields in dict
    if object.__getattribute__(self, "Meta").property_fields:
        props = self.get_properties(include=include, exclude=exclude)
        if props:
            dict_instance.update({prop: getattr(self, prop) for prop in props})

    return dict_instance

get_name(lower=True) classmethod

Returns name of the Model class, by default lowercase.

Parameters:

Name Type Description Default
lower bool

flag if name should be set to lowercase

True

Returns:

Type Description
str

name of the model

Source code in ormar/models/newbasemodel.py
404
405
406
407
408
409
410
411
412
413
414
415
416
417
@classmethod
def get_name(cls, lower: bool = True) -> str:
    """
    Returns name of the Model class, by default lowercase.

    :param lower: flag if name should be set to lowercase
    :type lower: bool
    :return: name of the model
    :rtype: str
    """
    name = cls.__name__
    if lower:
        name = name.lower()
    return name

get_properties(include, exclude) classmethod

Returns a set of names of functions/fields decorated with @property_field decorator.

They are added to dictionary when called directly and therefore also are present in fastapi responses.

Parameters:

Name Type Description Default
include Union[Set, Dict, None]

fields to include

required
exclude Union[Set, Dict, None]

fields to exclude

required

Returns:

Type Description
Set[str]

set of property fields names

Source code in ormar/models/newbasemodel.py
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
@classmethod
def get_properties(
    cls, include: Union[Set, Dict, None], exclude: Union[Set, Dict, None]
) -> Set[str]:
    """
    Returns a set of names of functions/fields decorated with
    @property_field decorator.

    They are added to dictionary when called directly and therefore also are
    present in fastapi responses.

    :param include: fields to include
    :type include: Union[Set, Dict, None]
    :param exclude: fields to exclude
    :type exclude: Union[Set, Dict, None]
    :return: set of property fields names
    :rtype: Set[str]
    """

    props = cls.Meta.property_fields
    if include:
        props = {prop for prop in props if prop in include}
    if exclude:
        props = {prop for prop in props if prop not in exclude}
    return props

get_relation_model_id(target_field)

Returns an id of the relation side model to use in prefetch query.

Parameters:

Name Type Description Default
target_field 'BaseField'

field with relation definition

required

Returns:

Type Description
Optional[int]

value of pk if set

Source code in ormar/models/newbasemodel.py
985
986
987
988
989
990
991
992
993
994
995
996
997
998
def get_relation_model_id(self, target_field: "BaseField") -> Optional[int]:
    """
    Returns an id of the relation side model to use in prefetch query.

    :param target_field: field with relation definition
    :type target_field: "BaseField"
    :return: value of pk if set
    :rtype: Optional[int]
    """
    if target_field.virtual or target_field.is_multi:
        return self.pk
    related_name = target_field.name
    related_model = getattr(self, related_name)
    return None if not related_model else related_model.pk

json(*, include=None, exclude=None, by_alias=False, skip_defaults=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=None, exclude_primary_keys=False, exclude_through_models=False, **dumps_kwargs)

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

Source code in ormar/models/newbasemodel.py
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
def json(  # type: ignore # noqa A003
    self,
    *,
    include: Union[Set, Dict] = None,
    exclude: Union[Set, Dict] = None,
    by_alias: bool = False,
    skip_defaults: bool = None,
    exclude_unset: bool = False,
    exclude_defaults: bool = False,
    exclude_none: bool = False,
    encoder: Optional[Callable[[Any], Any]] = None,
    exclude_primary_keys: bool = False,
    exclude_through_models: bool = False,
    **dumps_kwargs: Any,
) -> str:
    """
    Generate a JSON representation of the model, `include` and `exclude`
    arguments as per `dict()`.

    `encoder` is an optional function to supply as `default` to json.dumps(),
    other arguments as per `json.dumps()`.
    """
    if skip_defaults is not None:  # pragma: no cover
        warnings.warn(
            f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated '
            f'and replaced by "exclude_unset"',
            DeprecationWarning,
        )
        exclude_unset = skip_defaults
    encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__)
    data = self.dict(
        include=include,
        exclude=exclude,
        by_alias=by_alias,
        exclude_unset=exclude_unset,
        exclude_defaults=exclude_defaults,
        exclude_none=exclude_none,
        exclude_primary_keys=exclude_primary_keys,
        exclude_through_models=exclude_through_models,
    )
    if self.__custom_root_type__:  # pragma: no cover
        data = data["__root__"]
    return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs)

pk_column() property

Retrieves primary key sqlalchemy column from models Meta.table. Each model has to have primary key. Only one primary key column is allowed.

Returns:

Type Description
sqlalchemy.Column

primary key sqlalchemy column

Source code in ormar/models/newbasemodel.py
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
@property
def pk_column(self) -> sqlalchemy.Column:
    """
    Retrieves primary key sqlalchemy column from models Meta.table.
    Each model has to have primary key.
    Only one primary key column is allowed.

    :return: primary key sqlalchemy column
    :rtype: sqlalchemy.Column
    """
    if object.__getattribute__(self, "_pk_column") is not None:
        return object.__getattribute__(self, "_pk_column")
    pk_columns = self.Meta.table.primary_key.columns.values()
    pk_col = pk_columns[0]
    object.__setattr__(self, "_pk_column", pk_col)
    return pk_col

pk_type() classmethod

Shortcut to models primary key field type

Source code in ormar/models/newbasemodel.py
446
447
448
449
@classmethod
def pk_type(cls) -> Any:
    """Shortcut to models primary key field type"""
    return cls.Meta.model_fields[cls.Meta.pkname].__type__

remove(parent, name)

Removes child from relation with given name in RelationshipManager

Source code in ormar/models/newbasemodel.py
457
458
459
def remove(self, parent: "Model", name: str) -> None:
    """Removes child from relation with given name in RelationshipManager"""
    self._orm.remove_parent(self, parent, name)

saved() property

Saved status of the model. Changed by setattr and loading from db

Source code in ormar/models/newbasemodel.py
436
437
438
439
@property
def saved(self) -> bool:
    """Saved status of the model. Changed by setattr and loading from db"""
    return self._orm_saved

set_save_status(status)

Sets value of the save status

Source code in ormar/models/newbasemodel.py
461
462
463
def set_save_status(self, status: bool) -> None:
    """Sets value of the save status"""
    object.__setattr__(self, "_orm_saved", status)

signals() property

Exposes signals from model Meta

Source code in ormar/models/newbasemodel.py
441
442
443
444
@property
def signals(self) -> "SignalEmitter":
    """Exposes signals from model Meta"""
    return self.Meta.signals

update_forward_refs(**localns) classmethod

Processes fields that are ForwardRef and need to be evaluated into actual models.

Expands relationships, register relation in alias manager and substitutes sqlalchemy columns with new ones with proper column type (null before).

Populates Meta table of the Model which is left empty before.

Sets self_reference flag on models that links to themselves.

Calls the pydantic method to evaluate pydantic fields.

Parameters:

Name Type Description Default
localns Any

local namespace

required

Returns:

Type Description
None

None

Source code in ormar/models/newbasemodel.py
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
@classmethod
def update_forward_refs(cls, **localns: Any) -> None:
    """
    Processes fields that are ForwardRef and need to be evaluated into actual
    models.

    Expands relationships, register relation in alias manager and substitutes
    sqlalchemy columns with new ones with proper column type (null before).

    Populates Meta table of the Model which is left empty before.

    Sets self_reference flag on models that links to themselves.

    Calls the pydantic method to evaluate pydantic fields.

    :param localns: local namespace
    :type localns: Any
    :return: None
    :rtype: None
    """
    globalns = sys.modules[cls.__module__].__dict__.copy()
    globalns.setdefault(cls.__name__, cls)
    fields_to_check = cls.Meta.model_fields.copy()
    for field in fields_to_check.values():
        if field.has_unresolved_forward_refs():
            field = cast(ForeignKeyField, field)
            field.evaluate_forward_ref(globalns=globalns, localns=localns)
            field.set_self_reference_flag()
            if field.is_multi and not field.through:
                field = cast(ormar.ManyToManyField, field)
                field.create_default_through_model()
            expand_reverse_relationship(model_field=field)
            register_relation_in_alias_manager(field=field)
            update_column_definition(model=cls, field=field)
    populate_meta_sqlalchemy_table_if_required(meta=cls.Meta)
    super().update_forward_refs(**localns)
    cls.Meta.requires_ref_update = False

update_from_dict(value_dict)

Updates self with values of fields passed in the dictionary.

Parameters:

Name Type Description Default
value_dict Dict

dictionary of fields names and values

required

Returns:

Type Description
NewBaseModel

self

Source code in ormar/models/newbasemodel.py
873
874
875
876
877
878
879
880
881
882
883
884
def update_from_dict(self, value_dict: Dict) -> "NewBaseModel":
    """
    Updates self with values of fields passed in the dictionary.

    :param value_dict: dictionary of fields names and values
    :type value_dict: Dict
    :return: self
    :rtype: NewBaseModel
    """
    for key, value in value_dict.items():
        setattr(self, key, value)
    return self