Aggregation functions
Currently 6 aggregation functions are supported.
count(distinct: bool = True) -> int
exists() -> bool
sum(columns) -> Any
avg(columns) -> Any
min(columns) -> Any
-
max(columns) -> Any
-
QuerysetProxy
QuerysetProxy.count(distinct=True)
method
QuerysetProxy.exists()
method
QuerysetProxy.sum(columns)
method
QuerysetProxy.avg(columns)
method
QuerysetProxy.min(column)
method
QuerysetProxy.max(columns)
method
count
count(distinct: bool = True) -> int
Returns number of rows matching the given criteria (i.e. applied with filter
and exclude
).
If distinct
is True
(the default), this will return the number of primary rows selected. If False
,
the count will be the total number of rows returned
(including extra rows for one-to-many
or many-to-many
left select_related
table joins).
False
is the legacy (buggy) behavior for workflows that depend on it.
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Book(ormar.Model):
class Meta:
tablename = "books"
metadata = metadata
database = database
id: int = ormar.Integer(primary_key=True)
title: str = ormar.String(max_length=200)
author: str = ormar.String(max_length=100)
genre: str = ormar.String(
max_length=100,
default="Fiction",
choices=["Fiction", "Adventure", "Historic", "Fantasy"],
)
|
| # returns count of rows in db for Books model
no_of_books = await Book.objects.count()
|
exists
exists() -> bool
Returns a bool value to confirm if there are rows matching the given criteria (applied with filter
and exclude
)
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Book(ormar.Model):
class Meta:
tablename = "books"
metadata = metadata
database = database
id: int = ormar.Integer(primary_key=True)
title: str = ormar.String(max_length=200)
author: str = ormar.String(max_length=100)
genre: str = ormar.String(
max_length=100,
default="Fiction",
choices=["Fiction", "Adventure", "Historic", "Fantasy"],
)
|
| # returns a boolean value if given row exists
has_sample = await Book.objects.filter(title='Sample').exists()
|
sum
sum(columns) -> Any
Returns sum value of columns for rows matching the given criteria (applied with filter
and exclude
if set before).
You can pass one or many column names including related columns.
As of now each column passed is aggregated separately (so sum(col1+col2)
is not possible,
you can have sum(col1, col2)
and later add 2 returned sums in python)
You cannot sum
non numeric columns.
If you aggregate on one column, the single value is directly returned as a result
If you aggregate on multiple columns a dictionary with column: result pairs is returned
Given models like follows
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | from typing import Optional
import databases
import sqlalchemy
import ormar
from tests.settings import DATABASE_URL
database = databases.Database(DATABASE_URL)
metadata = sqlalchemy.MetaData()
class BaseMeta(ormar.ModelMeta):
metadata = metadata
database = database
class Author(ormar.Model):
class Meta(BaseMeta):
tablename = "authors"
order_by = ["-name"]
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
class Book(ormar.Model):
class Meta(BaseMeta):
tablename = "books"
order_by = ["year", "-ranking"]
id: int = ormar.Integer(primary_key=True)
author: Optional[Author] = ormar.ForeignKey(Author)
title: str = ormar.String(max_length=100)
year: int = ormar.Integer(nullable=True)
ranking: int = ormar.Integer(nullable=True)
|
A sample usage might look like following
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | author = await Author(name="Author 1").save()
await Book(title="Book 1", year=1920, ranking=3, author=author).save()
await Book(title="Book 2", year=1930, ranking=1, author=author).save()
await Book(title="Book 3", year=1923, ranking=5, author=author).save()
assert await Book.objects.sum("year") == 5773
result = await Book.objects.sum(["year", "ranking"])
assert result == dict(year=5773, ranking=9)
try:
# cannot sum string column
await Book.objects.sum("title")
except ormar.QueryDefinitionError:
pass
assert await Author.objects.select_related("books").sum("books__year") == 5773
result = await Author.objects.select_related("books").sum(
["books__year", "books__ranking"]
)
assert result == dict(books__year=5773, books__ranking=9)
assert (
await Author.objects.select_related("books")
.filter(books__year__lt=1925)
.sum("books__year")
== 3843
)
|
avg
avg(columns) -> Any
Returns avg value of columns for rows matching the given criteria (applied with filter
and exclude
if set before).
You can pass one or many column names including related columns.
As of now each column passed is aggregated separately (so sum(col1+col2)
is not possible,
you can have sum(col1, col2)
and later add 2 returned sums in python)
You cannot avg
non numeric columns.
If you aggregate on one column, the single value is directly returned as a result
If you aggregate on multiple columns a dictionary with column: result pairs is returned
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | from typing import Optional
import databases
import sqlalchemy
import ormar
from tests.settings import DATABASE_URL
database = databases.Database(DATABASE_URL)
metadata = sqlalchemy.MetaData()
class BaseMeta(ormar.ModelMeta):
metadata = metadata
database = database
class Author(ormar.Model):
class Meta(BaseMeta):
tablename = "authors"
order_by = ["-name"]
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
class Book(ormar.Model):
class Meta(BaseMeta):
tablename = "books"
order_by = ["year", "-ranking"]
id: int = ormar.Integer(primary_key=True)
author: Optional[Author] = ormar.ForeignKey(Author)
title: str = ormar.String(max_length=100)
year: int = ormar.Integer(nullable=True)
ranking: int = ormar.Integer(nullable=True)
|
A sample usage might look like following
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | author = await Author(name="Author 1").save()
await Book(title="Book 1", year=1920, ranking=3, author=author).save()
await Book(title="Book 2", year=1930, ranking=1, author=author).save()
await Book(title="Book 3", year=1923, ranking=5, author=author).save()
assert round(float(await Book.objects.avg("year")), 2) == 1924.33
result = await Book.objects.avg(["year", "ranking"])
assert round(float(result.get("year")), 2) == 1924.33
assert result.get("ranking") == 3.0
try:
# cannot avg string column
await Book.objects.avg("title")
except ormar.QueryDefinitionError:
pass
result = await Author.objects.select_related("books").avg("books__year")
assert round(float(result), 2) == 1924.33
result = await Author.objects.select_related("books").avg(
["books__year", "books__ranking"]
)
assert round(float(result.get("books__year")), 2) == 1924.33
assert result.get("books__ranking") == 3.0
assert (
await Author.objects.select_related("books")
.filter(books__year__lt=1925)
.avg("books__year")
== 1921.5
)
|
min
min(columns) -> Any
Returns min value of columns for rows matching the given criteria (applied with filter
and exclude
if set before).
You can pass one or many column names including related columns.
As of now each column passed is aggregated separately (so sum(col1+col2)
is not possible,
you can have sum(col1, col2)
and later add 2 returned sums in python)
If you aggregate on one column, the single value is directly returned as a result
If you aggregate on multiple columns a dictionary with column: result pairs is returned
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | from typing import Optional
import databases
import sqlalchemy
import ormar
from tests.settings import DATABASE_URL
database = databases.Database(DATABASE_URL)
metadata = sqlalchemy.MetaData()
class BaseMeta(ormar.ModelMeta):
metadata = metadata
database = database
class Author(ormar.Model):
class Meta(BaseMeta):
tablename = "authors"
order_by = ["-name"]
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
class Book(ormar.Model):
class Meta(BaseMeta):
tablename = "books"
order_by = ["year", "-ranking"]
id: int = ormar.Integer(primary_key=True)
author: Optional[Author] = ormar.ForeignKey(Author)
title: str = ormar.String(max_length=100)
year: int = ormar.Integer(nullable=True)
ranking: int = ormar.Integer(nullable=True)
|
A sample usage might look like following
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | author = await Author(name="Author 1").save()
await Book(title="Book 1", year=1920, ranking=3, author=author).save()
await Book(title="Book 2", year=1930, ranking=1, author=author).save()
await Book(title="Book 3", year=1923, ranking=5, author=author).save()
assert await Book.objects.min("year") == 1920
result = await Book.objects.min(["year", "ranking"])
assert result == dict(year=1920, ranking=1)
assert await Book.objects.min("title") == "Book 1"
assert await Author.objects.select_related("books").min("books__year") == 1920
result = await Author.objects.select_related("books").min(
["books__year", "books__ranking"]
)
assert result == dict(books__year=1920, books__ranking=1)
assert (
await Author.objects.select_related("books")
.filter(books__year__gt=1925)
.min("books__year")
== 1930
)
|
max
max(columns) -> Any
Returns max value of columns for rows matching the given criteria (applied with filter
and exclude
if set before).
Returns min value of columns for rows matching the given criteria (applied with filter
and exclude
if set before).
You can pass one or many column names including related columns.
As of now each column passed is aggregated separately (so sum(col1+col2)
is not possible,
you can have sum(col1, col2)
and later add 2 returned sums in python)
If you aggregate on one column, the single value is directly returned as a result
If you aggregate on multiple columns a dictionary with column: result pairs is returned
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | from typing import Optional
import databases
import sqlalchemy
import ormar
from tests.settings import DATABASE_URL
database = databases.Database(DATABASE_URL)
metadata = sqlalchemy.MetaData()
class BaseMeta(ormar.ModelMeta):
metadata = metadata
database = database
class Author(ormar.Model):
class Meta(BaseMeta):
tablename = "authors"
order_by = ["-name"]
id: int = ormar.Integer(primary_key=True)
name: str = ormar.String(max_length=100)
class Book(ormar.Model):
class Meta(BaseMeta):
tablename = "books"
order_by = ["year", "-ranking"]
id: int = ormar.Integer(primary_key=True)
author: Optional[Author] = ormar.ForeignKey(Author)
title: str = ormar.String(max_length=100)
year: int = ormar.Integer(nullable=True)
ranking: int = ormar.Integer(nullable=True)
|
A sample usage might look like following
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | author = await Author(name="Author 1").save()
await Book(title="Book 1", year=1920, ranking=3, author=author).save()
await Book(title="Book 2", year=1930, ranking=1, author=author).save()
await Book(title="Book 3", year=1923, ranking=5, author=author).save()
assert await Book.objects.max("year") == 1930
result = await Book.objects.max(["year", "ranking"])
assert result == dict(year=1930, ranking=5)
assert await Book.objects.max("title") == "Book 3"
assert await Author.objects.select_related("books").max("books__year") == 1930
result = await Author.objects.select_related("books").max(
["books__year", "books__ranking"]
)
assert result == dict(books__year=1930, books__ranking=5)
assert (
await Author.objects.select_related("books")
.filter(books__year__lt=1925)
.max("books__year")
== 1923
)
|
QuerysetProxy methods
When access directly the related ManyToMany
field as well as ReverseForeignKey
returns the list of related models.
But at the same time it exposes a subset of QuerySet API, so you can filter, create,
select related etc related models directly from parent model.
count
Works exactly the same as count function above but allows you to select columns from related
objects from other side of the relation.
exists
Works exactly the same as exists function above but allows you to select columns from related
objects from other side of the relation.
sum
Works exactly the same as sum function above but allows you to sum columns from related
objects from other side of the relation.
avg
Works exactly the same as avg function above but allows you to average columns from related
objects from other side of the relation.
min
Works exactly the same as min function above but allows you to select minimum of columns from related
objects from other side of the relation.
max
Works exactly the same as max function above but allows you to select maximum of columns from related
objects from other side of the relation.